Главная страница
Навигация по странице:

  • Местные регуляторные механизмы

  • Вопрос №4. Адаптационно-трофическая функция вегетативной нервной системы. Феномен Орбели-Гинецинского. Понятие об аксон-рефлексе.

  • Аксон—рефлекс При раздражении вегетативных нервов обнаружены своеобразные реакции, получившие название аксон-рефлексов

  • 23 Билет. Вопрос №1. Противоточно-множительная система почек. Канальцевая секреция.

  • Вопрос №2. Лимбическая система, четверохолмие. Бугры четверохолмия

  • Вопрос №3 Виды пищеварения. Пищевой центр. Вопрос №4. Регуляция кровотока и сосудов

  • 24 Билет. Вопрос №1. Особенности возбудимости и проводимости в гладких мышцах. Автоматия гладких мышц, её механизм.

  • Билет. Вопрос 1. Парасимпатика, симпатика, метасимпатика. Структурные и функциональные особенности. Вопрос 2. Боль


    Скачать 1.06 Mb.
    НазваниеБилет. Вопрос 1. Парасимпатика, симпатика, метасимпатика. Структурные и функциональные особенности. Вопрос 2. Боль
    Дата02.10.2019
    Размер1.06 Mb.
    Формат файлаdocx
    Имя файлаotvety_na_bilety.docx
    ТипДокументы
    #88392
    страница6 из 7
    1   2   3   4   5   6   7
    Часть капилляров периодически суживается, другая расширяется, некоторые постоянно не заполняются кровью. Эта непрерывная «игра» капилляров является результатом нормального обмена веществ в тканях.

    ТРАНССОСУДИСТЫЙ ОБМЕН ВЕЩЕСТВ

    В механизме перехода веществ через сосудистую стенку в межтканевое пространство и из межтканевого пространства в сосуд играют роль следующие процессы:

    * фильтрация,

    * реабсорбция,

    * диффузия

    * микропиноцитоз.

    ФИЛЬТРАЦИЯ И РЕАБСОРБЦИЯ

    Кровь поступает в артериальную часть капилляра под давлением 30 мм рт.ст. — это гидростатическое давление. В межклеточной жидкости оно составляет около 3 мм рт.ст. Онкотическое давление плазмы крови равно 25 мм рт.ст., а межклеточной жидкости — 4 мм рт.ст. В артериальном конце капилляра способствует фильтрации гидростатическое давление (30 мм рт.ст. —3 мм рт.ст. = 27 мм рт.ст. — это фильтрационное давление).

    В то же время препятствует фильтрации онкотическое давление, однако оно остается таким же в венозной части капилляра и способствует реабсорбции, т.е. переходу веществ из межтканевого пространства в капилляр (25 мм рт.ст. —4 мм рт.ст. =21 мм рт.ст. — реабсорбционное давление). Сниженное гидростатическое давление (10 мм рт.ст.) не играет решающей роли и не мешает реабсорбции. Значит, в венозной части капилляра способствует реабсорбции онкотическое давление.

    Фильтрация увеличивается при общем повышении АД, расширении резистивных сосудов во время мышечной деятельности, изменении положения тела (переходе из горизонтального в вертикальное), увеличении объема циркулирующей крови после вливания питательных растворов. Фильтрация возрастает также при снижении онкотического давления (при снижении количества белка в плазме — гипопротеинемии).

    Увеличивают реабсорбцию падение АД, кровопотеря, сужение резистивных сосудов, повышение онкотического давления.

    Местные регуляторные механизмы

    Они реализуются уже на уровне эндотелия сосудов, который обладает способностью вырабатывать и выделять биологически активные вещества, способные расслаблять или сокращать гладкие мышцы сосудов в ответ на повышение АД, а также механические или фармакологические воздействия.

    К веществам, синтезируемым эндотелием, относится расслабляющий фактор (ВЭФР) — нестабильное соединение, одним из которых может быть оксид азота (NO), другое вещество — эндотелин, вазоконстрикторный пептид, полученный из эндотелиоцитов аорты свиньи.

    Если полностью денервировать сосуд, он хотя и расширится, но будет сохранять некоторое напряжение своей стенки за счет базального, или миогенного, тонуса гладких мышц. Этот тонус создается благодаря автоматии гладкомышечных клеток сосудов, которые имеют нестабильно поляризованную мембрану, облегчающую возникновение спонтанных ПД в этих клетках. Увеличение АД растягивает клеточную мембрану, что увеличивает спонтанную активность гладких мышц и приводит к повышению их тонуса.

    Базальный тонус особенно выражен в сосудах микроциркуляторного русла, преимущественно в прекапиллярах, обладающих автоматией. Он поддерживается также за счет химической информации как от эндотелия сосудистой стенки при ее растяжении, так и от различных веществ, растворенных в крови, т.е. находится преимущественно под влиянием гуморальной регуляции.

    Соотношение между давлением и скоростью кровотока в сосудах разного типа

    Пассивное растяжение. Благодаря эластичности сосудов изменения давления влияют на объемную скорость кровотока не только непосредственно, но также косвенно – путем изменений просвета сосуда.

    Вследствие этого в некоторых сосудах объемная скорость кровотока в большей степени зависит от давления, чем в жестких трубках. Для таких сосудов наклон кривых кровоток–давление непрерывно увеличивается. Классическим примером сосудов, пассивно растягивающихся при изменениях давления, служат сосуды легких.

    Вопрос №3. Механизм образования конечной мочи. Канальцевая реабсорбция. Пороговые и безпороговые вещества. Виды транспорта. Роль переносчиков. Механизмы избирательной реабсорбции аминокислот, глюкозы, воды, мочевины, минеральных веществ.

    Моча образуется в почках из плазмы крови; ежеминутно через почки проходит 1/4 объема крови, выбрасываемой сердцем. Основной структурно-функциональной единицей почки, обеспечивающей образование мочи, является нефрон. В почке человека содержится около 1,2 млн нефронов. Нефрон состоит из нескольких последовательно соединенных отделов, располагающихся в корковом и мозговом веществе: сосудистого клубочка; главного, или проксимального, отдела канальца, тонкого нисходящего отдела петли Генле, дистального отдела канальца и собирательной трубочки.

    Механизм мочеобразования складывается из трех основных процессов: 1) клубочковой фильтрации из плазмы крови воды и низкомолекулярных компонентов с образованием первичной мочи; 2) канальцевой реабсорбции (обратного всасывания в кровь) воды и необходимых для организма веществ из первичной мочи; 3) канальцевой секреции ионов, органических веществ эндогенной и экзогенной природы.

    Процесс клубочковой ультрафильтрации осуществляется под влиянием физико-химических и биологических факторов через структуры гломерулярного фильтра, находящегося на пути выхода жидкости из просвета капилляров клубочка в полость капсулы. Гломерулярный фильтр состоит из трех слоев: эндотелия капилляров, базальной мембраны и эпителия висцерального листка капсулы или подоцитов.

    К биологическим факторам обеспечения фильтрации относятся активность подоцитов, которые, сокращаясь и расслабляясь, действуют как микронасосы, откачивающие фильтрат в полость капсулы, а также сокращение и расслабление мезангиальных клеток, изменяющих тем самым площадь поверхности клубочкового фильтра.

    Физико-химические факторы обеспечения фильтрации — отрицательный заряд структур фильтра и фильтрационное давление, являющееся основной причиной фильтрационного процесса.

    Основной количественной характеристикой процесса фильтрации является скорость клубочковой фильтрации (СКФ) — объем ультрафильтрата или первичной мочи, образующейся в почках в единицу времени. СКФ зависит от нескольких факторов: 1) от объема крови (точнее плазмы), проходящей через кору почек в единицу времени; 2) фильтрационного давления; 3) фильтрационной поверхности; 4) числа действующих нефронов.

    СКФ в физиологических условиях поддерживается на довольно постоянном уровне, составляя в норме у мужчин около 125 мл/мин, а у женщин — 110 мл/мин.

    Канальцевая реабсорбция — процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках. В зависимости от отдела канальцев, где он происходит, различают проксимальную и дистальную реабсорбцию; в зависимости от механизма транспорта выделяют пассивную, первично и вторично активную реабсорбцию.

    Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ из первичной мочи — глюкозы, белка, аминокислот и витаминов, 2/3 профильтровавшихся воды и натрия, больших количеств калин, двухвалентных катионов, хлора, бикарбоната, фосфата, мочевой кислоты, мочевины и др.

    Проксимальная реабсорбция глюкозы и аминокислот осуществляется с помощью специальных переносчиков, которые одновременно связывают и переносят натрий. При определенной концентрации глюкозы может произойти полная загрузка всех молекул переносчиков, и глюкоза уже не сможет всасываться обратно в кровь. Максимальная загрузка молекул канальцевых переносчиков при определенной концентрации вещества в первичной моче и, соответственно, в крови характеризуется понятием «максимальный канальцевый транспорт веществ». Величине максимального канальцевого транспорта соответствует более старое понятие «почечный порог выведения», т. е. та концентрация вещества в крови и в первичной моче, при которой оно уже не может быть полностью реабсорбиро-вано в канальцах и появляется в конечной моче. Вещества, для которых может быть найден порог выведения, называются пороговыми. Типичным примером служит глюкоза, полностью всасывающаяся из первичной мочи при концентрации в плазме крови ниже 10 ммоль/л (180 мг/дцл) и появляющаяся в конечной моче (полностью не реабсорбируется) при содержании в крови выше 10 ммоль/л. То есть порог выведения для глюкозы — концентрация 10 ммоль/л.

    Вещества, которые в канальцах не реабсорбируются (инулин, маннитол) или реабсорбируются мало и выделяются пропорционально накоплению в крови (мочевина, сульфаты и др.), называются непороговыми.

    Дистальная реабсорбция ионов и воды по объему существенно меньше проксимальной, но, существенно меняясь под влиянием регулирующих воздействий, она определяет состав конечной мочи и способность почки выделять концентрированную или разбавленную мочу. В дистальном отделе нефрона активно реабсорбируется натрий. Хотя здесь всасывается около 10 % его профильтровавшегося количества, этот процесс обеспечивает выраженное уменьшение его концентрации в моче и, напротив, повышение содержания в интерстициальной жидкости, что создает значительный градиент осмотического давления между мочой и интерстицием.

    Анионы хлора всасываются преимущественно пассивно вслед за Na+. Секреция в мочу Н+ эпителием дистальных канальцев связана с реабсорбцией Na+. Активно всасываются в этом отделе ионы калия, кальция и фосфаты.

    Канальцевой секрецией называют активный транспорт в мочу веществ, содержащихся в крови или образуемых непосредственно в клетках канальцевого эпителия (аммиак). Секреция обычно осуществляется против концентрационного или электрохимического градиента с затратой энергии. Из крови секретируются ионы калия, ионы водорода, органические кислоты и основания эндогенного происхождения, а также поступившие в организм чужеродные вещества. Для ряда ксенобиотиков скорость и интенсивность канальцевой секреции значительно превышает скорость клубочковой фильтрации. Способностью к секреции обладают клетки эпителия как проксимального, так и дистального отделов канальца. Клетки проксимальных отделов секретируют органические соединения с помощью специальных переносчиков. Секреция протонов, в основном, осуществляется в проксимальных канальцах. Однако дистальная их секреция играет основную роль в регуляции кислотноосновного равновесия в организме. Калий секретируется в дистальных канальцах и собирательных трубочках, аммиак — в проксимальном и дистальном отделах.

    Вопрос №4. Адаптационно-трофическая функция вегетативной нервной системы. Феномен Орбели-Гинецинского. Понятие об аксон-рефлексе.

    Функция симпатической нервной системы, обеспечивающая приспособление организма позвоночных животных и человека к меняющимся условиям среды (особенноэкстремальным) путём изменения уровня обмена веществ всех органов и тканей. Теория разработана советским физиологом Л. А. Орбели. Согласно этой теории, т. н. функциональные нервы, вызывающие специфическую деятельность ткани илиоргана, управляют лежащими в её основе процессамиобмена веществ, симпатические же нервы регулируют уровень обмена веществ, возбудимость иработоспособность тканей и органов. Показано, что утомлённая ритмическим раздражением мышцавосстанавливает работоспособность при раздражении иннервирующего её симпатического нерва.Симпатическая нервная система влияет также на состояние всех отделов центральной нервной системы иорганов чувств, в частности изменяет безусловно- и условнорефлекторную деятельность. А.-т. ф. направленана стабилизацию функциональных свойств: органы, лишённые симпатической иннервации, не утрачиваютприсущей им функции, но при повышенных требованиях (связанных с изменением условий или интенсивнойработой) они не могут в такой же мере, как нормальные органы, перестраивать уровень обмена веществ ижизнедеятельность. А.-т. ф. осуществляется путём физико-химических и биохимических сдвигов, происходящих под влиянием импульсов, идущих по симпатическим нервам прямо к органам, или черезпосредника симпатической нервной системы — Адреналин.

    Феномен Орбели-Гинецинского. Двигательные волокна раздражались электростимулятором. Изолированная мышца отвечала сокращением на каждое из ритмически повторяющихся раздражений.По мере утомления амплитуда кривой снижалась. После раздражения симпатических нервов, происходило увеличение амплитуды сокращений мышцы, и на кимограмме отмечалась новая волна повышенной активности.

    Л.А. Орбели выдвинул представление об универсальной адаптационно-трофической функции симпатической нервной системы. В основе феномена Орбели-Гинецинского лежит активация симпатической нервной системы.

    Аксон—рефлекс

    При раздражении вегетативных нервов обнаружены своеобразные реакции, получившие название аксон-рефлексов, или псевдорефлексов. Они отличаются от рефлексов тем, что при них не происходит передачи возбуждения с рецепторного нейрона на эффекторный. Аксон-рефлексымогут возникать в том случае, если аксоны пре- или постганглионарных нейронов ветвятся так, что одна ветвь иннервирует один орган или одну часть органа, а другая ветвь иннервирует другой орган или другую часть органа.

    Вследствие такого ветвления аксона раздражение одной ветви может вызвать распространение возбуждения и по второй ветви; в результате может произойти реакция отдаленного от места раздражения органа.
    23 Билет.

    Вопрос №1. Противоточно-множительная система почек. Канальцевая секреция.



    Канальцевая реабсорбция – обратное всасывание воды и других биологически активных веществ из ультрафильтрата (первичной мочи), происходящее в канальцах при образовании окончательной (пузырной) мочи почками. Канальцевая реабсорбция тесно связана с концентрационной и водовыделительной функциями почек. В первом случае обеспечивается осмотическое давление мочи, превышающее осмотическое давление плазмы крови. В последнем случае особенно важна для поддержания постоянства гомеостаза водосберегающая роль почек. При этом вода в значительно больших количествах реабсорбируется в канальцах, чем натрий, хлориды, глюкоза, бикарбонаты и другие осмотически активные вещества. В проксимальном отделе канальцевого аппарата около 80-90% воды ультрафильтрата всасывается обратно в кровь и лишь 10-20% поступает в следующие отделы нефрона (петлю Генле). В свою очередь, степень всасывания воды определяется осмотическим давлением в проксимальном отделе нефрона, которое регулируется натрием – основным катионом первичной мочи. Чем больше фильтрация, тем выше и реабсорбция. При нормальной функции почек показатель канальцевой реабсорбции воды равен 97-99%.

    Канальцевая секреция?

    Вопрос №2. Лимбическая система, четверохолмие.

    Бугры четверохолмия выполняют афферентную функцию, остальные образования – эфферентную. Бугры четверохолмия тесным образом взаимодействуют с ядрами III–IV пар черепно-мозговых нервов, красным ядром, со зрительным трактом. За счет этого взаимодействия происходит обеспечение передними буграми ориентировочной рефлекторной реакции на свет, а задними – на звук. Обеспечивают жизненно важные рефлексы: старт-рефлекс – двигательная реакция на резкий необычный раздражитель (повышение тонуса сгибателей), ориентир-рефлекс – двигательная реакция на новый раздражитель (поворот тела, головы).

    Гипоталамус выполняет центральную нейроэндокринную функцию, контролируя переднюю долю гипофиза, что в свою очередь регулирует секрецию гормонов определенных желёз.

    Функциональная значимость ядер таламуса определяется не только их проекцией на другие структуры мозга, но и тем, какие структуры посылают к нему свою информацию. В таламус приходят сигналы от зрительной, слуховой, вкусовой, кожной, мышечной систем, от ядер черепно-мозговых нервов, ствола, мозжечка, продолговатого и спинного мозга. В связи с этим таламус фактически является подкорковым чувствительным центром.

    Функции лимбической системы: интеграция вегетативных, соматических и поведенческих реакций:получая и обрабатывая информацию из окружающей среды и внутренней среды организма, ЛС через свои афферентные выходы «запускает автономные, соматические и поведенческие реакции, обеспечивающие адекватное приспособление и сохранение гомеостаза. Другая функция – формирование эмоций

    Вопрос №3 Виды пищеварения. Пищевой центр.

    Вопрос №4. Регуляция кровотока и сосудов



    Механизмы регуляции кровообращения условно подразделяют на местные и центральные нейрогуморальные. Первые регулируют кровоток в органах и тканях, вторые – системную гемодинамику при общих адаптивных реакциях организма.

    Местные механизмы регуляции. В основе этих механизмов лежит тот факт, что образующиеся в процессе метаболизма продукты способны расширять прекапиллярные артериолы и увеличивать в соответствии с деятельностью органа количество открытых функционирующих капилляров.

    Сосудодвигательный центр – совокупность нейронов, расположенных на различных уровнях центральной нервной системы и осуществляющих регуляцию сосудистого тонуса. В составе ЦНС есть следующие уровни: 1. Спинальный; 2) бульбарный; 3) гипоталамический; 4) корковый.

    Роль спинного мозга в регуляции сосудистого тонуса. Спинной мозг играет определенную роль в регуляции сосудистого тонуса. Нейроны, регулирующие сосудистый тонус: ядра симпатических и парасимпатических нервов, иннервирующих сосуды. Спинальный уровень сосудодвигательного центра открыт в 1870 г. Овсянниковым. Он перерезал центральную нервную систему на различных уровнях и обнаружил, что у спинального животного после удаления головного мозга снижается давление (АД) крови, но затем постепенно восстанавливается, хотя не до исходного уровня, и поддерживается на постоянном уровне. Спинной уровень сосудодвигательного центра не имеет большого самостоятельного значения, он передаёт импульсы от выше лежащих отделов сосудодвигательного центра.

    МИОГЕННАЯ АУТОРЕГУЛЯЦИЯ. Внезапное растяжение мелких кровеносных сосудов вызывает сокращение гладкомышечной стенки сосудов в течение нескольких секунд. Следовательно, когда высокое артериальное давление растягивает сосуд, возникает ответное его сужение — и кровоток уменьшается почти до нормального уровня. 
    И наоборот, при падении давления степень растяжения сосуда снижается, гладкомышечные клетки расслабляются, что приводит к увеличению кровотока. Такой миогенный ответ является неотъемлемым свойством гладких мышц и проявляется без участия нервных или гуморальных влияний. Наиболее выражен он в артериолах.

    24 Билет.

    Вопрос №1. Особенности возбудимости и проводимости в гладких мышцах. Автоматия гладких мышц, её механизм.

    Мышечные клетки соединены между собой особыми цитоплазматическими выростами – нексусами. Поэтому возбуждение в гладких мышцах легко передается с одной клетки на другую. В гладких мышцах плохо выражена проводящая возбуждение система: слабо развиты поперечные трубочки, саркоплазматический ретикулюм практически отсутствует. Поэтому скорость проведения возбуждения в гладких мышцах значительно меньше, чем в поперечно-полосатых. В гладких мышцах фактически нет синапсов, т. к. отсутствует постсинаптическая мембрана и медиатор изливается прямо на мембрану мышечных клеток, на которой находятся многочисленные рецепторы (адрено-, холино-, серотонинорецепторы). Как известно, адренорецепторы, в свою очередь, делятся на альфу и бета, поэтому взаимодействие одного и того же медиатора в зависимости от характера рецептора может давать противоположный эффект: в одном случае – сокращение гладкой мускулатуры, в другом – ее расслабление. Взаимодействие медиатора со специфическим рецептором, вызывающее тот или иной мышечный эффект опосредовано клеточными системами регуляции (цАМФ, цГМФ, Са-система). В большинстве случаев альфа-адренорецепторы участвуют в сокращении гладких мышц, в то время как бета-адренорецепторы расслабляют их. Альфа-адренорецепторы регулируют в основном уровень ионов Са, тогда как бета-адренорецепторы ингибируют аденилатциклазу. Мембрана гладких мышечных клеток не имеет Nа - каналов, в ней имеются Са - каналы, обусловливающие возбуждение благодаря возникновению Са - тока. Проводимость гладких мышц также отличается от скелетных. Как было отмечено раньше, возбуждение с одной мышечной клетки может передаваться на другую через особые контакты - нексусы, которые имеются между плазматическими мембранами соседних клеток. Возбуждение по гладким мышечным клеткам распространяется с небольшой скоростью - 2-10 см/с. Сократимость гладкой мускулатуры носит более медленный и длительный характер. Гладкие мышцы работают как в фазном, так и тоническом режиме. Вследствие большой продолжительности сократительного акта гладкие мышцы даже под влиянием редких импульсов могут переходить в состояние длительного сокращения, напоминающего тетанус. Кроме того, характерным для гладких мышц является и то, что они могут поддерживать состояние тонического напряжения без видимой затраты энергии, с чем связано их медленное утомление. Автоматия - это свойство мышечной гладкой ткани самовозбуждаться без воздействия к каких - либо факторов, которым не обладают скелетные мышцы. Клетки, обладающие автоматией, пейсмеккерные клетки, идентичны по строению обычным мышечным клеткам, однако отличаются от них по некоторым электрофизиологическим свойствам. В пейсмеккерных клетках наблюдается спонтанная деполяризация, приводящая к самовозбуждению клетки, природа которой точно не установлена. Спонтанная деполяризация, доходя до критического уровня, приводит к развитию потенциала действия и самовозбуждению мышечной клетки.

    Сокращение гладких мышц

    В отличие от поперечнополосатых мышц, в которых миофибриллы существуют постоянно, в гладких мышцах они образуются только в момент сокращения, которое происходит вследствие поступления сигнала от нервных клеток. Под воздействием медиатора в плазмолемме миоцитов образуются кавеолы, в которые путём эндоцитоза поступают ионы кальция, вызывающие полимеризацию миозина и его взаимодействие с актиновыми филаментами. Актиновые филаменты одним своим концом с помощью сшивающих белков прикрепляются к специальным областям внутренней поверхности плазмолеммы, а другим - к миозину. Миозиновые филаменты прикрепляются к специальным местам в цитозоле клетки (нексусы).



    Смещение актиновых филаментов относительно миозиновых приводит к укорочению клетки. После прекращения поступления сигнала кальций покидает кавеолы, миозин деполимеризуется, миофибриллы распадаются и клетка расслабляется
    1   2   3   4   5   6   7


    написать администратору сайта