Главная страница
Навигация по странице:

  • 2. Влияние частоты электрического поля на диэлектрическую проницаемость диэлектриков с ионной связью.

  • Билет №23 1. Изменение свойств металлических материалов при холодной пластической деформации.

  • 2. Влияние температуры на электропроводность диэлектриков и проводников. Электропроводность диэлектриков

  • При повышении температуры

  • Билет №24 1. Точечные дефекты кристаллической решетки. Влияние точечных дефектов не свойства материалов.

  • В материалах с ионной связью

  • В материалах с ковалентной связью

  • Билет №25 1. Поверхностные дефекты кристаллической решетки, влияние поверхностных дефектов на свойства материалов.

  • 2. Влияние температуры на электрическую прочность диэлектриков

  • Билет №26 1. Объемные дефекты кристаллических решеток. Влияние объемных дефектов на свойства материалов.

  • 2. Природа электрического пробоя диэлектриков. Механизмы электрического пробоя.

  • Шпоры по Материалке. Билет 1 Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов


    Скачать 1 Mb.
    НазваниеБилет 1 Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов
    Дата24.05.2018
    Размер1 Mb.
    Формат файлаdoc
    Имя файлаШпоры по Материалке.doc
    ТипДокументы
    #44789
    страница5 из 8
    1   2   3   4   5   6   7   8

    Билет №22

    1. Влияние энергии межатомного взаимодействия на свойства материалов.

    Любой материал представляет собой продукт взаимодействия огромного количества атомов, и свойства материала зависят от характера взаимодействия этих атомов. Зная характер взаимодействия атомов, можно прогнозировать свойства материалов. Поскольку взаимодействие множества атомов анализировать достаточно сложно, вначале для простоты рассмотрим взаимодействие двух атомов.

    Между двумя атомами действует сила притяжения, она убывает обратно пропорционально квадрату расстояния между атомами. Помимо силы притяжения, между атомами действует и сила взаимного отталкивания, которая обратно пропорциональна расстоянию в степени n, где n больше 2.

    В том случае, когда взаимодействует множество атомов, смещение любого из них приводит к росту энергии системы, Поэтому потенциальную кривую можно представить в виде периодической функции (рис. 2).



    Рис. 2. Зависимость энергии потенц-го взаимодейс-твия (Wp) от расстояния между атомами (x) для случая взаимодействия множества атомов.

    При минимуме энергии системы расстояния между атомами одинаковы и равны r0. Вдоль любого направления расстояния будут равны r0, хотя эти расстояния по разным направлениям будут разными. Расстояние между атомами вдоль какого-либо направления принято обозначать а.

    Для переброса атома из одного равновесного положения в другое требуется повышение энергии. Поэтому в том случае, когда энергия системы минимальна или незначительно отличается от минимальной, атомы не могут перемещаться из одного положения в другое, и мы имеем дело с твердым телом. При значительном повышении энергии системы атомы активно колеблются, обмениваются энергией - и в результате могут переходить из одного положения в другое. В этом случае мы имеем дело с жидким телом. Дальнейший рост энергии системы приводит к выходу атомов из потенциальной ямы, они перестают взаимодействовать друг с другом, могут занимать различные положения – и мы имеем дело с газом.
    2. Влияние частоты электрического поля на диэлектрическую проницаемость диэлектриков с ионной связью.

    (Поляризация упругого ионного смещения. Этот вид поляризации вызван упругим смешением ионов из равновесных положений под действием внешнего электрического поля. Он характерен для ионных кристаллов (мрамор, поваренная соль, слюда, кварц и др.). Важно отметить, что в таких материалах, наряду с поляризацией упругого ионного смещения, присутствует и поляризация упругого электронного смещения. Из приведенных данных следует, что величина поляризации возрастает с увеличением радиусов ионов и с увеличением их зарядов).

    Время установления этого механизма поляризации сравнимо с периодом оптических колебаний ионов в кристаллической решетки и составляет 10-12-10-13 с. Поэтому до частот 1012- 1013 Гц диэлектрическая проницаемость веществ с ионной связью не зависит от частоты внешнего поля.

    Повышение температуры увеличивает меж-атомные расстояния, вследствие чего связь между отдельными ионами ослабляется, и облегчается взаимное смещение ионов под действием внешнего электрического поля. Поэтому при повышении температуры диэлектрическая проницаемость ион-ных кристаллов возрастает (рис. 30).

    Билет №23

    1. Изменение свойств металлических материалов при холодной пластической деформации.

    В основе пластической деформации лежит необ-ратимое перемещение одних частей кристалла отно-сит других. После снятия нагрузки исчезает только упругая состав-ляющая деформации. Пластичность (способность металлов перед разрушением прете-рпевать значительную пластическую деформацию) является одним из важней-ших свойств металлов. Благодаря пластичности возмож-на обработка металлов давлением. Пластичность позволяет пере-распределять локальные напряжения равномерно по всему объему металла, что снижает опасность разрушения. Для металлов характерно большее сопротивление растяжению или сжатию, чем сдвигу след-но процесс пластической деформации предс-тавляет собой процесс скольжения одной части кристалла относит другой по кристаллографической плоскости или плоскостям скольжения с более плотной упаковкой атомов, где наименьшее сопро-тивление сдвигу. Скольже-ние осуществляется в результате перемещения в кристалле дислокаций. В результате скольжения кристаллическое строение перемещающихся частей не меняется.

    Пластическая деформация способствует упроч-нению металлов, уменьшению плотности, увели-чению электри-ческого сопротивления, умень-шению теплопроводности, снижению устойчивости против коррозии.

    Холодную деформацию проводят при температурах ниже температуры рекристаллизации под действием пластической деформации. После снятия нагрузки, превышающей предел текучести, в образце остается остаточная деформация. При повторном нагружении повышается предел текучести металла и снижается его способность к пластической деформации, т.е. происходит упрочнение металла. При деформации зёрна меняют свою форму и ориентировку, образуя волокнистую структуру с преимущественной ориентировкой кристал-лов. Происходит разворот беспорядочно ориентирован-ных зёрен осями наибольшей прочности вдоль направле-ния деформации. Зёрна деформируются и сплющивают-ся, вытягиваясь в направлении действующих сил, образуя волокнистую или слоистую структуру. Чем выше степень деформации, тем больше зёрен получает преимуществен-ную ориентировку, механические свойства, характери-зующие сопротивление деформации, улучшаются, происходит деформационное упрочнение, а способность к пластической деформации снижается.
    2. Влияние температуры на электропроводность диэлектриков и проводников.

    Электропроводность диэлектриков опреде-ляется в основном перемещением ионов. На концентрацию ионов оказывают влияние: состав ма-териала, температура, облучение материала части-цами высоких энергий. Концентрация подвижных носи-телей заряда в полярных материалах, как правило, выше, чем в неполярных. Это связано с тем, что ионы примесей электрически взаимо-действуют с дипольными моментами полярных молекул, поэтому очистка полярных материалов от примесей затруднена.

    При повышении температуры энергия системы повышается на величину kT и вероятность выхода иона из потенциальной ямы возрастает. Поэтому электропро-водность диэлектриков при повышении температуры растет в соответствии с выражением:

    γ=γ0exp(Ea/kT),

    где: γ0 - удельная электропроводность диэлектрика, константа,

    Ea - энергия активации выхода иона из потенциальной ямы,

    kT- тепловая энергия системы.
    Проводниковые материалы

    Основными носителями заряда в металлических материалах являются свободные электроны, появляющиеся при образовании металлической связи. Как известно металлическая связь образуется между атомами элементов с валентной электронной оболочкой заполненной менее чем на половину. В этом случае валентные электроны отрываются от атомов и обнажается полностью заполненная электронная оболочка. При этом валентные электроны становятся свободными, образуя «электронный газ». Ранее мы отмечали, что чем выше плотность электронного газа, тем плотнее упакована кристаллическая решетка металлов. В этой связи следует ожидать что электропроводность металлов с ГЦК решеткой будет выше, чем электропроводность металлов с ОЦК решеткой.

    Число свободных электронов не зависит от температуры, при нагреве в области комнатных температур электросопротивление увелич-ся практически линейно.


    Билет №24

    1. Точечные дефекты кристаллической решетки. Влияние точечных дефектов не свойства материалов.

    К ним относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки.

    Представление о вакансиях было впервые введено Я. И. Френкелем для объяснения процессов диффузии в металлах - материалах с плотноупакованной кристаллической решеткой.

    При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий.

    Согласно модели Френкеля, при образовании вакансий атом из узла кристаллической решетки перепрыгивает в междоузлие, и появляется пара дефектов - вакансия и межузельный атом, или пара Френкеля.

    В материалах с ионной связью между атомами основным носителем заряда являются ионы. При появлении вакансий перемещение ионов облегчается, а следовательно, падает удельное электросопротивление. При появлении в материале примесей кристаллическая решетка искажается, энергия материала локально повышается, что способствует облегчению выхода иона из потенциальной ямы. Таким образом, появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью.

    В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью.

    Присутствие неизовалентных примесей ведет к появлению в материале дырок или свободных электронов, то есть к повышению концентрации носителей заряда.
    2. Влияние частоты электрического поля на диэлектрическую проницаемость полярных диэлектриков

    Диэлектрическая проницаемость полярных веществ сильно зависит от их температуры и частоты внешнего электрического поля.

    Рис.31. Зависимость диэлектрической проницаемости от температуры и от частоты электрического поля (f1f2).

    Так как ориентация диполей по направлению поля осуществляется в процессе теплового движения, то наступление состояния поляризации требует времени. С увеличением вязкости возрастает время, необходимое для наступления поляризации. При увеличении частоты электрического поля время действия поля на диполи за половину периода уменьшается, а следовательно, уменьшается величина поляризации и снижается величина диэлектрической проницаемости. С увеличением частоты максимум диэлектрической проницаемости не только снижается, но и смещается в сторону высоких температур, то есть меньших вязкостей диэлектрика.

    Билет №25

    1. Поверхностные дефекты кристаллической решетки, влияние поверхностных дефектов на свойства материалов.

    К поверхностным дефектам решетки относят-ся дефекты упаковки и границы зерен.

    Дефект упаковки. При движении обычной полной дислокации атомы последовательно становятся из одного равновесного положения в другое, а при движении частичной дислокации атомы переходят в новые положения, нетипичные для данной кристаллической решетки. В результате в материале появляется дефект упаковки. Появление дефектов упаковки связано с движением частичных дислокаций.

    В том случае, когда энергия дефекта упаковки велика, расщепление дислокации на частичные энергетически невыгодно, а в том случае, когда энергия дефекта упаковки мала, дислокации расщепляются на частичные, и между ними появляется дефект упаковки. Материалы с низкой энергией дефекта упаковки прочнее материалов с высокой энергией дефекта упаковки.

    Границы зёрен представляют собой узкую переходную область между двумя кристаллами неправильной формы. Ширина границ зерен, как правило, составляет 1,5-2 межатомных расстояния. Поскольку на границах зерен атомы смещены из равновесного положения, то энергия границ зерен повышена. Энергия границ зерен существенно зависит от угла разориентации кристаллическихрешеток соседних зерен. При малых углах разориентации (до 5 град.) энергия границ зерен практически пропорциональна углу разориентировки. При углах разориентировки, превышающих 5 град., плотность дислокаций на границах зерен становится столь высокой, что ядра дислокаций сливаются.

    Зависимость энергии границ зерен (Егр) от угла разориентации (). сп1 и сп2 – углы разориентации специальных границ.

    При определенных углах разориентации соседних зерен энергия границ зерен резко снижается. Такие границы зерен называются специальными. Соотв-но углы разориентации границ, при которых энергия границ минимальна, называют специальными углами.

    Измельчение зерен ведет к росту удельного электрического сопротивления металлических материалов и падению удельного электрического сопротивления диэлектриков и полупроводников.
    2. Влияние температуры на электрическую прочность диэлектриков

    При нахождении диэлектрика в электрическом поле, часть энергии электрического поля рассеи-вается в диэлектрике из-за диэлектрических потерь, и диэлектрик нагревается. Повышение температуры диэлектрика по сравнению с окружающей средой ведет к отводу тепла. Дальнейшее развитие процессов зависит от соотношения скорости отвода тепла и скорости тепловыделения. На рисунке 43 показаны зависи-мости мощности тепловыделения (Ртв) и мощности отвода тепла (Рто) от температуры для неполярного диэлектрика. Как видно из приведенного рисунка в области температур от точки a до точки b мощности отвода тепла превышает мощность тепловыделения, поэтому повышения температуры не происходит. Вне этой области мощность выделения тепла превы-шает мощность отвода тепла и диэлектрик нагре-вается. Нагрев материала диэлектрика может привес-ти к его растрескиванию, оплавлению, обугливанию, что снижает электропрочность диэлектрика и ведет к его разрушению.



    Очевидно, что стойкость к электротепловому пробою зависит как от свойств самого материала, так и от конструкции изолятора. Чем выше поверхность изолятора, тем больше тепла рассеивается в окружающую среду и меньше вероятность электротеплового пробоя.

    Следует также отметить, что в случае, когда рабочая температура изолятора приближается к точке b любое повышение температуры приведет к выходу изоляции из строя. В то же время в случае, когда рабочая температура находится ниже точки, а колебания температуры не столь опасны. Нагрев диэлектрика приведет к увеличению мощности отвода тепла. Поэтому мощности выделения и отвода тепла сравняются.



    Таким образом, наиболее опасными температу-рами являются температуры вблизи точки b. Поэто-му зависимость электропрочности диэлектриков от температуры выглядит, как показано на рис. 44.

    Билет №26

    1. Объемные дефекты кристаллических решеток. Влияние объемных дефектов на свойства материалов.

    К объёмным, или трехмерным дефектам кристаллической решетки относятся трещины и поры. Наличие трещин резко снижает прочность как материалов на металлической основе, так и неметаллических материалов. Это связано с тем, что острые края трещин являются концентраторами напряжений. Важно отметить, что при одинаковой геометрии трещин пластичность металлических материалов остается выше, чем неметаллических.

    Присутствие в материале пор также снижает прочность металлических материалов, поскольку уменьшается истинное сечение деталей. В неметаллических материалах влияние пор на свойства материала не столь однозначно. Крупные поры снижают прочность материала, поскольку уменьшается сечение изделий. В то же время мелкие поры могут повышать прочность материалов. Это связано с тем, что при возникновении пор появляется свободная поверхность. Таким образом, на атомы, находящиеся на поверхности пор, действуют сжимающие напряжения. Неметаллические материалы с ионной или ковалентной связью между атомами хорошо сопротивляются действию сжимающих и плохо противостоят действию растягивающих напряжений. При всех реальных схемах нагружения (например, изгиб) в материале возникают как растягивающие, так и сжимающие напряжения. При наличии пор сжимающие напряжения на их поверхности компенсируют внешние растягивающие напряжения. Поэтому присутствие мелких пор ведет к росту прочности неметаллических материалов.

    Поскольку энергия атомов на поверхности объёмных дефектов повышена, то они являются источником вакансий. При нагреве трещины и поры как бы "испаряются", превращаясь в вакансии. При охлаждении вакансии вновь "конденсируются". При "конденсации" вакансионного "пара" система стремится к минимуму энергии, а следовательно, к минимуму поверхностной энергии. Таким образом, при нагреве и последующем охлаждении острые трещины превращаются в сферические поры, то есть за счет чередования нагрева с охлаждением можно превращать опасные трещины в менее опасные поры.

    Уменьшение сечения материала при наличии пор и трещин, а также искажение кристаллической решетки вблизи их поверхности приводит к повышению удельного электросопротивления металлических материалов. В неметаллических материалах наличие объёмных дефектов снижает удельное электросопротивление вследствие повышения подвижности ионов по вакансиям в материалах с ионной связью и облегчения выхода электронов в материалах с ковалентной связью.
    2. Природа электрического пробоя диэлектриков. Механизмы электрического пробоя.

    Под пробоем диэлектриков понимают потерю ими диэлектрических свойств. Принято различать напряжение пробоя (Uпр) и электрическую прочность (Епр).

    Напряжение пробоя это то напряжение, при котором резко снижается удельное сопротивление материала изделия. Электрической прочностью называют напряженность электрического поля, при которой происходит пробой. В однородном поле электрическая прочность определяется как отношение напряжения пробоя к толщине материала. В неоднородных полях под Епр понимают среднюю напряженность электрического поля.

    В твердых диэлектриках после пробоя нередко остается прожженное отверстие, вокруг которого наблюдается область частичного разложения и оплавления материала. При повторном приложении электрического поля пробой в этой области наблюдается при меньшей напряженности поля. Поэтому пробой изоляции из твердых диэлектриков проводит к выходу электрической машины или аппарата из строя. Высокая подвижность молекул жидких и газообразных диэлектриков приводит к восстановлению свойств изоляции после пробоя. В этом смысле газообразные или жидкие диэлектрики надежнее, чем твердые, хотя их электропрочность ниже.
    1   2   3   4   5   6   7   8


    написать администратору сайта