Главная страница
Навигация по странице:

  • Билет №15 1. Влияние напряженности магнитного поля на величину магнитной индукции в ферромагнетиках.

  • 2. Влияние давления на электрическую прочность газов.

  • 2. Электреты и их применение.

  • Билет №17 1. Принципы выбора материалов для зажимных контактов.

  • 2. Суперионные проводники.

  • Билет №18 1.Природа высокой магнитной проницаемости пермаллоев.

  • 2.Влияние температуры на диэлектрическую проницаемость диэлектриков с ионной связью.

  • Билет №19 1. Особенности применения низконикелевых и высоконикелевых пермаллоев

  • 2. Влияние температуры на тангенс угла потерь диэлектриков с неполярной ковалентной связью

  • Билет №20 1. Природа высокой магнитной проницаемости альсифера. Альсифер

  • 2. Влияние температуры на диэлектрическую проницаемость сегнетоэлектриков.

  • 2. Влияние температуры на диэлектрическую проницаемость полярных диэлектриков

  • Шпоры по Материалке. Билет 1 Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов


    Скачать 1 Mb.
    НазваниеБилет 1 Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов
    Дата24.05.2018
    Размер1 Mb.
    Формат файлаdoc
    Имя файлаШпоры по Материалке.doc
    ТипДокументы
    #44789
    страница4 из 8
    1   2   3   4   5   6   7   8

    2. Пьезоэлектрики. Природа пьезоэлектрического эффекта. Применение пьезоэлектриков.

    Пьезоэлектриками называют диэлектрики, в которых под действием механических напряжений появляется поляризация, а под действием электри-ческого поля пьезоэлектрики упруго деформируют-ся. Таким образом, пьезоэлектрики являются элект-ромеханическими преобразователями, преобразую-щими механическую энергию в электрическую и обратно.

    Пьезоэлектрический эффект наблюдается в кристаллах, не имеющих центра симметрии, у которых при деформации ячейки происходит появление электрического момента. Заряды q, возникающие на поверхности пластин из пьезокристаллов пропорциональны приложенным силам.

    Пьезоэлектрическими свойствами обладают многие кристаллы, лишенные центра симметрии: кварц, турмалин, сегнетова соль и др. Часто используется пьезокерамика. Пьезоэлектрики нашли широкое применение для изготовления резонаторов, преобразователей колебаний и др.

    Билет №15

    1. Влияние напряженности магнитного поля на величину магнитной индукции в ферромагнетиках.

    При помещении ферромагнетика во внешнее магнитное поле векторы намагниченности каких-либо доменов окажутся совпавшими или близкими к совпадению с вектором напряжён-ти внешнего магнитного поля. Энергия таких доменов будет мин, тогда как энергия всех остальных доменов повысится. Для того чтобы понизить энергию системы благоприятно ориентированные домены растут. При этом увелич-ся намагниченность (М) и, , возрастает индукция (В). Зависимость индукции от напряженности внешнего магнитного поля принято называть кривой намагничивания.



    На начальном участке кривой намагничивания увеличение напряж-ти внешнего поля ведет к незначительному росту индукции, причем при отключении внешнего поля индукция снижется до 0. Этот участок принято называть участком обратимого намагничивания или областью Релея (I).

    На 2 участке незначит-ое измен-ие напряжен-ти внешнего поля ведет к заметным изменениям индукции. Этот участок называют участком резкого роста инд-ии или областью скачков Баркгаузена (II).

    На 3 участке кривой намагничивания зависимость индукции от напряженности внешнего поля вновь ослабевает. Этот участок называют участком замедленного намагничивания или область намагничивания за счет процессов вращения (III).

    На четвертом участке индукция растет пропорционально напряженности магнитного поля. Этот участок называют участком насыщения или областью парапроцесса (IV).
    2. Влияние давления на электрическую прочность газов.



    Другим ярким представителем развития фотонной ионизации является зависимость электропрочности газов от давления. При повышении давления выше атмосферного электропрочность газа растет. Это связано с уменьшением межмолекулярных расстоянием и снижением длины свободного пробега ионов. При снижении давления электрическая прочность газа уменьшается и даже под действием поля малой напряженности газ начинает светиться. Для случая воздуха, чем ниже давление, тем меньше длина волны испускаемого света, то есть по мере уменьшения давления цвет свечения меняется с красного до синего. При низких давлениях (менее 10-4 торр.) воздух перестает светиться - «черный вакуум». Изменения длины светового излучения связано с тем, что по мере снижения давления длина пробега ионов возрастает и ионы набирают большую кинетическую энергию. Соответственно возбужденные столкновениями с ионами электроны атомов испускают кванты большей энергии или меньшей длины. При разряжении соответствующем «черному вакууму» концентрация молекул в межэлектродном пространстве насколько мала, что длина пробега ионов сравнивается с межэлектродным промежутком. Поэтому вероятность ионизации молекул становится ничтожно малой и пробой наступает за счет вырывания электронов из электродов.

    Билет №16

    1. Влияние температуры на спонтанную намагниченность ферромагнетиков

    Так как магнитные материалы используются главным образом при климатических температурах, важным параметром является намагниченность при этих температурах. Хорошо известно, что величина спонтанной намагниченности в ферромагнетиках уменьшается с повышением температуры. Это падение намагниченности,, слабое при относительно низких температурах, резко возрастает с приближением к точке Кюри. (Величина спонтанной намагниченности уменьшается с ростом температуры и в точке Кюри (Тс) становится равной нулю). Температурные изменения намагниченности сопровождаются так называемыми кооперативными эффектами. Слабые изменения намагниченности в области низких температур, вероятно, связаны с механизмом спиновых волновых возбуждений.

    Компенсационный эффект заключается в том, что, когда сумма магнитных моментов атомов сорта А и сумма магнитных моментов атомов сорта В равны друг другу, спонтанная намагниченность полностью исчезает.
    2. Электреты и их применение.

    Электретами называют диэлектрики, у которых постоянный электрический момент или избыточный заряд сохраняются длительное время. Электреты могут служить источниками электрического поля в окружающем пространстве, аналогично постоянным магнитам, являющимися источниками магнитного поля. Эта аналогия в свойствах постоянных магнитов и электретов отражена в их названии (по-английски постоянный магнит - magnet). В зависимости от способов получения различают термоэлектреты, фотоэлектреты, электроэлектреты, трибоэлектреты, радиоэлектреты.

    Билет №17

    1. Принципы выбора материалов для зажимных контактов.

    В зажимных контактах («клеммы», болтовые соединения и т.д.) действительная поверхность контакта заметно меньше поверхности налагаемых друг на друга проводников. Это связано с наличием на поверхности сопрягаемых деталей неровностей и слоя окислов. Поэтому чем мягче материал контактов и чем выше его коррозионная стойкость, тем меньше сопротивление контакта. В этой связи контакты обычно облуживают – покрывают слоем олова. Для особо надежных контактов применяют серебрение или золочение.

    Важно также иметь в виду, что при контакте разнородных материалов (например, меди и стали) происходит активная коррозия химически более активного элемента. Так при контакте стали с медью, будет происходить интенсивная коррозия стали, и появление окислов железа приведет к росту сопротивления контакта. Поэтому в тех случаях, когда необходим контакт стальной детали с медной, обе детали облуживают.
    2. Суперионные проводники.

    Суперионные проводники (суперионики), неметаллические кристаллические или стеклообразные вещества с высокой электрической проводимостью (10–1—10–3 Ом–1см–1), сравнимой с проводимостью жидких электролитов и расплавов солей. К ним относятся, например, AgI, RbAg4I5, некоторые твёрдые растворы. Вещества с ионной проводимостью используются как твёрдые электролиты, соединения со смешанной ионно-электронной проводимостью выполняют роль электродов.

    Билет №18

    1.Природа высокой магнитной проницаемости пермаллоев.

    Пермаллоями называют сплавы железа и никеля, работающие в слабых полях. При этом различают низконикелевые пермаллои и высоконикелевые пермаллои. Низконикелевые пермаллои содержат 45-65% Ni, высоконикелевые пермаллои - 76-80% Ni. Для низконикелевых пермаллоев характерны более высокое удельной электросопротивление и повышенная индукция насыщения, однако, магнитная проницаемость низконикелевых пермаллоев ниже магнитной проницаемости высоконикелевых пермаллоев. Важно отметить, что индукция насыщения высоконикелевых пермаллоев ниже индукции насыщения низконикелевых пермаллоев. Это обстоятельство связано с тем, что магнитный момент иона никеля ниже магнитного момента иона железа.

    Для материалов, работающих в слабых полях, чрезвычайное значение имеет высокое значение начальной магнитной проницаемости. Иначе говоря, для таких материалов важна большая подвижность границ доменов в условиях малой напряженности внешнего магнитного поля. Следовательно, такие материалы должны быть однофазными и иметь малую магнитную анизотропию и магнитострикцию.

    Увеличение межатомных расстояний между атомами переходных металлов вследствие легирова-ния, приводит к снижению магнитной анизотропии. Поэтому для достижения максимальной магнитной проницаемости используют сильно легированные сплавы. Примером могут служить альсифер и пермаллои.
    2.Влияние температуры на диэлектрическую проницаемость диэлектриков с ионной связью.

    Повышение температуры увеличивает меж-атомные расстояния, вследствие чего связь между отдельными ионами ослабляется, и облегчается взаимное смещение ионов под действием внешнего электрического поля. Поэтому при повышении температуры диэлектрическая проницаемость ион-ных кристаллов возрастает (рис. 30).



    Рис. 30. Зависимость диэлектрической проницаемости от температуры для ионных кристаллов.

    Время установления этого механизма поляризации сравнимо с периодом оптических колебаний ионов в кристаллической решетки и составляет 10-12-10-13 с. Поэтому до частот 1012- 1013 Гц диэлектрическая проницаемость веществ с ионной связью не зависит от частоты внешнего поля.

    (Поляризация упругого ионного смещения. Этот вид поляризации вызван упругим смешением ионов из равновесных положений под действием внешнего электрического поля. Он характерен для ионных кристаллов (мрамор, поваренная соль, слюда, кварц и др.). Важно отметить, что в таких материалах, наряду с поляризацией упругого ионного смещения, присутствует и поляризация упругого электронного смещения. Из приведенных данных следует, что величина поляризации возрастает с увеличением радиусов ионов и с увеличением их зарядов).

    Билет №19

    1. Особенности применения низконикелевых и высоконикелевых пермаллоев

    Пермаллоями называют сплавы железа и никеля, работающие в слабых полях. При этом различают низконикелевые пермаллои и высоконикелевые пермаллои. Низконикелевые пермаллои содержат 45-65% Ni, высоконикелевые пермаллои - 76-80% Ni. Для низконикелевых пермаллоев характерны более высокое удельной электросопротивление и повышенная индукция насыщения, однако, магнитная проницаемость низконикелевых пермаллоев ниже магнитной проницаемости высоконикелевых пермаллоев. Важно отметить, что индукция насыщения высоконикелевых пермаллоев ниже индукции насыщения низконикелевых пермаллоев. Это обстоятельство связано с тем, что магнитный момент иона никеля ниже магнитного момента иона железа.

    Высоконикелевые пермаллои прим-ся для изг-я сердечников малогаб-х трансф-в, реле и магн-х экранов; магнитных усилителей и бесконтактных реле.

    Низконикелевые пермаллои прим-ся для изг-я сердечников междуламповых и маломощных силовых трансф-в, дросселей, работающих при повышенных индукциях.

    При использ-ии пемал. сплавов необ-мо иметь в виду их искл-но высокую чувств-ть к деформациям.

    Магнитные свойства пермалоев чувствительны к внешним механическим напряжениям, зависят от химического состава и наличия инородных примесей в сплаве. Удельное сопротивление высоконикелевых пермалоев почти в три раза меньше, чем низконикелевых, поэтому при повышенных частотах предпочтительно использовать низконикелевые пермалои. Молибден и хром повышают удельное сопротивление и начальную магнитную проницаемость пермалоев, и уменьшает чувствительность к деформациям, но снижается индукция насыщения. Медь увеличивает постоянство r в узких интервалах напряженности магнитного поля, повышает температурную стабильность и удельное сопротивление, а также делает сплавы легко поддающимися механической обработке. Кремний и марганец в основном только увеличивают удельное сопротивление пермалоев.
    2. Влияние температуры на тангенс угла потерь диэлектриков с неполярной ковалентной связью

    С увеличением температуры концентрация носи-телей заряда в диэлектрике повышается. Поэтому вероятность столкновения носителя заряда со струк-турной единицей вещества также растет. Следова-тельно, при увеличении температуры потери на сквозную электропроводность возрастают (рис. 35).



    В неполярных диэлектриках реализуется упругая электронная или упругая ионная поляризация. Как известно, при развитии упругих процессов потерь энергии нет, поэтому в неполярных диэлектриках основной вид потерь - потери за счет сквозной электропроводности.

    Билет №20

    1. Природа высокой магнитной проницаемости альсифера.

    Альсифер- сплав системы Fe-Si-Al, содержащий около 9,5% кремния и 5,5% алюминия. При этом составе магнитная анизотропия минимальна и сплав имеет очень высокую магнитную проницаемость. Отклонение от оптимального состава приводит к снижению магнитной проницаемости .

    Сплав отличается достаточно высоким удельный электрическим сопротивлением, что снижает потери на вихревые токи. Вместе с тем, сплав непластичен и тверд. Детали из него изготавливают методом порошковой металлургии, а окончательная обработка деталей возможна только анодно-механическим и электроискровым способами, а также шлифовкой. Трудность обработки повышает стоимость изделий, однако, поскольку сплав не содержит дорогостоящих компонентов его широко применяют для изготовления магнитных экранов и магнитопроводов.

    Для материалов, работающих в слабых полях, чрезвычайное значение имеет высокое значение начальной магнитной проницаемости. Иначе говоря, для таких материалов важна большая подвижность границ доменов в условиях малой напряженности внешнего магнитного поля. Следовательно, такие материалы должны быть однофазными и иметь малую магнитную анизотропию и магнитострикцию.

    Увеличение межатомных расстояний между атомами переходных металлов вследствие легирова-ния, приводит к снижению магнитной анизотропии. Поэтому для достижения максимальной магнитной проницаемости используют сильно легированные сплавы. Примером могут служить альсифер и пермаллои.
    2. Влияние температуры на диэлектрическую проницаемость сегнетоэлектриков.

    В сегнетоэле-ах в опред-ом диапазоне темпер-р наблюдается спонтанная или самопроизвольная поляр-ия.

    Существенное влияние на диэлектрическую проницаемость оказывает температура. При повышении температуры кинетическая энергия ангармонических колебаний ионов возрастает, и электростатическая связь между ионами ослабевает. Внешнему полю легче перебросить ионы из одного положения в другое, соответственно, поляризация и диэлектрическая проницаемость возрастают. Максимум диэлектрической проницаемости наблюдается при температуре Кюри.

    Легирование сегнетоэлектриков приводит к изменению энергии связи между ионами и дает возможность изменять температуру Кюри и величину диэлектрической проницаемости.

    Билет №21

    1.Типы химических связей между атомами, влияние типа связи на свойства материалов.

    Ковалентная связь образуется между атомами одного или нескольких химических элементов с близкими ионизационными потенциалами. В чистом виде ковалентная связь реализуется при взаимодействии элементов с наполовину заполненными электронными оболочками. H2 ,C, Si, Ge, Sn. Соседние атомы обмениваются электронами.

    Появление между положительно заряженными ионами пары отрицательно заряженных электронов приводит к тому, что оба иона притягиваются к обобществленным электронам и, тем самым, притягиваются друг к другу. Каждый атом взаимодействует с ограниченным числом соседей, причем число соседей равно числу валентных электронов атома. Следовательно, ковалентная связь насыщенна. Кроме того, атом взаимодействует только с теми соседями, с которыми он обменялся электронами, то есть ковалентная связь имеет направление.

    Ионная связь образуется при взаимодействии атомов с малым количеством валентных электронов и атомов с большим количеством электронов на валентных оболочках. При этом наружные электроны атомов с низкими потенциалами ионизации переходят на валентные оболочки атомов с высокими ионизационными потенциалами. Ионная связь ненасыщенна, поскольку каждый из отрицательно заряженных ионов притягивает к себе положительно заряженные, а каждый из положительно заряженных ионов притягивает к себе все отрицательно заряженные. Однако ионная связь направлена, поскольку ион притягивает к себе разноименно заряженные ионы и отталкивает одноименно заряженные.

    Уменьшение размера иона и увеличение его заряда ведет к росту энергии связи, а следовательно, к росту температуру плавления материала, уменьшению коэффициента теплового расширения и к увеличению модуля упругости.

    Металлическая связь образуется между атомами одного или нескольких химических элементов, у которых валентные электронные оболочки застроены меньше чем на половину. Поскольку энергия иона минимальна при полностью заполненной внешней оболочке, атомы отдают внешние валентные электроны и превращаются в положительно заряженные ионы, между которыми находятся свободные электроны (электронный газ).

    Металлическая связь не имеет направления и ненасыщенна. Кристаллические решетки металлов упакованы плотно.

    Связь Ван-дер-Ваальса образуется при сближении молекул или атомов инертных газов и заключается в их связи между собой за счет постоянных или взаимно созданных дипольных моментов.
    2. Влияние температуры на диэлектрическую проницаемость полярных диэлектриков

    Диэлектрическая проницаемость полярных веществ сильно зависит от их температуры и частоты внешнего электрического поля. При низких температурах, когда подвижность молекул и радикалов, входящих в состав молекул, мала, поворот диполей на большие углы невозможен, и в материале наблюдается поляризация электронного упругого смещения и дипольно-упругая поляризация. В связи с этим диэлектрическая проницаемость полярных материалов при низких температурах мала (=2-2,5). С возрастанием температуры подвижность диполей увеличивается, и облегчается их ориентация под действием внешнего поля. Следовательно, диэлектрическая проницаемость растет. Однако при дальнейшем росте температуры кинетическая энергия теплового движения диполей возрастает настолько, что броуновское движение диполей разрушает ориентацию, задаваемую внешним полем. Поэтому диэлектрическая проницаемость снижается (см. рис. 31). Таким образом, зависимость =f(t) для веществ с дипольно-релаксационной поляризацией имеет характерную форму "холма".



    Рис.31. Зависимость диэлектрической проницаемости от температуры и от частоты электрического поля (f1f2).

    Так как ориентация диполей по направлению поля осуществляется в процессе теплового движения, то наступление состояния поляризации требует времени. С увеличением вязкости возрастает время, необходимое для наступления поляризации. При увеличении частоты электрического поля время действия поля на диполи за половину периода уменьшается, а следовательно, уменьшается величина поляризации и снижается величина диэлектрической проницаемости. С увеличением частоты максимум диэлектрической проницаемости не только снижается, но и смещается в сторону высоких температур, то есть меньших вязкостей диэлектрика.

    1   2   3   4   5   6   7   8


    написать администратору сайта