Главная страница
Навигация по странице:

  • Билет №31 1. Природа электропроводности металлических материалов.

  • 2. Электротепловой пробой диэлектриков.

  • Билет №32 1. Природа высокой пластичности металлических материалов.

  • 2.Принципы получения магнитомягких материалов

  • Билет №33 1.Природа высокой магнитной проницаемости пермаллоев.

  • 2. Влияние давления на электрическую прочность газов.

  • Билет №34 1. Принципы получения металлических материалов высокого электрического сопротивления.

  • 2. Электрохимический пробой диэлектриков.

  • Билет №35 1. Металлические материалы высокой электропроводности.

  • 2. Влияние частоты электрического поля на электрическую прочность газов

  • Шпоры по Материалке. Билет 1 Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов


    Скачать 1 Mb.
    НазваниеБилет 1 Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов
    Дата24.05.2018
    Размер1 Mb.
    Формат файлаdoc
    Имя файлаШпоры по Материалке.doc
    ТипДокументы
    #44789
    страница7 из 8
    1   2   3   4   5   6   7   8

    2. Влияние температуры на тангенс угла потерь в полярных диэлектриках:

    В полярных диэлектриках, помимо потерь на сквозную электропроводность, появляются потери на поляризацию, то есть внешнее электрическое поле совершает работу по повороту диполей. Эту работу можно оценить как произведение момента сил (М) на угол поворота (). При увеличении температуры подвижность диполей растет, и момент сил, необходимый для поворота на один и тот же угол, снижается. В то же время, рост подвижности диполей при повышении температуры ведет к увеличению угла поворота под действием постоянного момента сил. Таким образом, работа, совершаемая электрическим полем на поворот диполей, при росте температуры вначале увеличивается, а затем уменьшается.

    Помимо потерь энергии поля на поляризацию, в полярных диэлектриках существуют потери на сквозную электропроводность. Важно отметить, что хотя качественно процесс электропроводности в полярных диэлектриках не отличается от процесса электропроводности в неполярных диэлектриках, количественные различия имеются. Так, в полярных диэлектриках концентрация носителей заряда, как правило, повышена, поскольку из-за полярности молекул основного материала очистка его от примесей затруднена. Суммируя потери на сквозную проводимость и поляризацию, получаем зависимость tg от температуры показанную на рис. 38.

    Билет №31

    1. Природа электропроводности металлических материалов.

    Основными носителями заряда в металлических материалах являются свободные электроны, появляющиеся при образовании металлической связи. Как известно металлическая связь образуется между атомами элементов с валентной электронной оболочкой заполненной менее чем на половину. В этом случае валентные электроны отрываются от атомов и обнажается полностью заполненная электронная оболочка. При этом валентные электроны становятся свободными, образуя «электронный газ». Ранее мы отмечали, что чем выше плотность электронного газа, тем плотнее упакована кристаллическая решетка металлов. В этой связи следует ожидать что электропроводность металлов с ГЦК решеткой будет выше, чем электропроводность металлов с ОЦК решеткой.

    Помимо концентрации электронов на электропроводность оказывает влияние и их подвижность. На подвижность электронов в основном оказывают влияние два фактора: наличие дефектов кристаллической решетки и строение внутренних электронных оболочек атомов. При любом искажении кристаллической решетки распространение электронных волн затрудняется, что аналогично снижению подвижности электронов. Резко снижает подвижность электронов наличие незаполненных внутренних электронных оболочек. В этом случае свободные электроны могут временно захватываться незаполненными внутренними оболочками атомов. Поэтому электропроводность переходных металлов существенно ниже электропроводности обычных металлов.

    Очевидно, что высокой электропроводностью будут обладать чистые непереходные металлы с ГЦК решеткой (Ag, Cu, Al, Au).

    Высокой механической прочностью будут обладать металлы с низкой энергией дефекта упаковки или сплавы металлов. Однако в случае образования твердого раствора помимо роста прочности увеличивается и удельное электросопротивление. Поэтому для материалов высокой электропроводности используют лишь такое легирование, когда компоненты не растворяются друг в друге.
    2. Электротепловой пробой диэлектриков.

    При нахождении диэлектрика в электрическом поле, часть энергии электрического поля рассеи-вается в диэлектрике из-за диэлектрических потерь, и диэлектрик нагревается. Повышение температуры диэлектрика по сравнению с окружающей средой ведет к отводу тепла. Дальнейшее развитие процессов зависит от соотношения скорости отвода тепла и скорости тепловыделения. На рисунке 43 показаны зависи-мости мощности тепловыделения (Ртв) и мощности отвода тепла (Рто) от температуры для неполярного диэлектрика. Как видно из приведенного рисунка в области температур от точки a до точки b мощности отвода тепла превышает мощность тепловыделения, поэтому повышения температуры не происходит. Вне этой области мощность выделения тепла превы-шает мощность отвода тепла и диэлектрик нагре-вается. Нагрев материала диэлектрика может привес-ти к его растрескиванию, оплавлению, обугливанию, что снижает электропрочность диэлектрика и ведет к его разрушению.



    Очевидно, что стойкость к электротепловому пробою зависит как от свойств самого материала (у полярных диэлектриков диэлектрические потери выше и стойкость к электротепловому пробою ниже), так и от конструкции изолятора. Чем выше поверхность изолятора, тем больше тепла рассеи-вается в окружающую среду и меньше вероятность электротеплового пробоя.

    Следует также отметить, что в случае, когда рабочая температура изолятора приближается к точке b любое повышение температуры приведет к выходу изоляции из строя. В то же время в случае, когда рабочая температура находится ниже точки, а колебания температуры не столь опасны. Нагрев диэлектрика (при нахождении его при температуре ниже точки а) приведет к увеличению мощности отвода тепла. Поэтому мощности выделения и отвода тепла сравняются.



    Таким образом, наиболее опасными температу-рами являются температуры вблизи точки b. Поэто-му зависимость электропрочности диэлектриков от температуры выглядит, как показано на рис. 44.


    Билет №32

    1. Природа высокой пластичности металлических материалов.

    При приложении внешних напряжений дислокации смещаются и выходят на поверхность кристалла, и таким образом осуществляется пластическая деформация. Очевидно, что перемеще-ние дислокаций вдоль плотноупакованных направ-лений и в плотноупакованных плоскостях осуществ-ляется легче, чем в неплотноупакованных направ-лениях, вдоль которых расстояния между атомами больше. Следовательно, материалы с плотноу-пакованными кристаллическими решетками  металлы  обладают высокой пластичностью.
    2.Принципы получения магнитомягких материалов

    Магнитомягкими называют материалы легко перемагничивающиеся под действием внешнего магнитного поля. Для таких материалов характерны низкие значения коэрцитивной силы и высокие значения магнитной проницаемости. Их используют для концентрации магнитного поля. В большинстве случаев магнитомягкие материалы работают в переменных магнитных полях, поэтому для них важно высокое удельное электрическое сопротивление. Исторически первым магнитомягким материалом было малоуглеродистое железо, обладающее низкой механической твердостью. Поэтому такие материалы получили название магнитомягких.

    Для работы в качестве магнитопроводов в постоянных и низкочастотных полях наиболее подходящими являются железо и его сплавы с кремнием. Поскольку у железа для заполнения 3d орбитали не хватает 4 электронов, атомы железа обладают большим магнитным моментом. В связи с этим, у железа высокая индукция насыщения (2,2 Тл). Следует отметить, что наиболее часто встречающиеся примеси - углерод, кислород, сера и фосфор - плохо растворяются в железе при невысоких температурах и выделяются в виде карбидов, оксидов, сульфидов и фосфидов. Эти включения затрудняют перемещение границ доменов и, тем самым снижают магнитную проницаемость и увеличивают коэрцитивную силу.

    Наиболее дешевым материалом является технически чистое железо с суммарным содержанием примесей до 0,1%. Благодаря сравнительно низкому удельному электрическому сопротивлению (0,1 мкОм м) технически чистое железо используется в основном для магнитопроводов постоянного магнитного потока. Существенным недостатком технически чистого железа является его старение, то есть повышение коэрцитивной силы со временем за счет выделения тонко дисперсных частиц карбидов и нитридов. Для уменьшения вредного влияния старения химические соединения выделяют заранее в виде сравнительно крупных частиц. Для этого материал подвергают отжигу при 910 – 950 С и медленному охлаждению.

    Очистка железа от примесей приводит к росту магнитной проницаемости и снижению коэрцитивной силы. Эти преимущества особенно ярко проявляются в слабых полях, то есть в полях используемых в радиоэлектронике и измерительных устройствах. Очистка железа производится электролизом, восстановлением в водороде химически чистых окислов железа и термическим разложением пентакарбонила железа (Fe(CO)5). Соответственно различают электролитическое, восстановленное и карбонильное железо. Поскольку очистка существенно увеличивает стоимость материала, его применение крайне ограничено. Наибольшее применение получило карбонильное железо. Это связано с тем, что при разложении пентакарбонила железа получается металлический порошок. Смешав этот порошок с каким-либо лаком можно получить материал, сочетающий высокое удельное электрическое сопротивление с высокой магнитной проницаемостью.

    Билет №33

    1.Природа высокой магнитной проницаемости пермаллоев.

    Пермаллоями называют сплавы железа и никеля, работающие в слабых полях. При этом различают низконикелевые пермаллои и высоконикелевые пермаллои. Низконикелевые пермаллои содержат 45-65% Ni, высоконикелевые пермаллои - 76-80% Ni. Для низконикелевых пермаллоев характерны более высокое удельной электросопротивление и повышенная индукция насыщения, однако, магнитная проницаемость низконикелевых пермаллоев ниже магнитной проницаемости высоконикелевых пермаллоев. Важно отметить, что индукция насыщения высоконикелевых пермаллоев ниже индукции насыщения низконикелевых пермаллоев. Это обстоятельство связано с тем, что магнитный момент иона никеля ниже магнитного момента иона железа.

    Для материалов, работающих в слабых полях, чрезвычайное значение имеет высокое значение начальной магнитной проницаемости. Иначе говоря, для таких материалов важна большая подвижность границ доменов в условиях малой напряженности внешнего магнитного поля. Следовательно, такие материалы должны быть однофазными и иметь малую магнитную анизотропию и магнитострикцию.

    Увеличение межатомных расстояний между атомами переходных металлов вследствие легирова-ния, приводит к снижению магнитной анизотропии. Поэтому для достижения максимальной магнитной проницаемости используют сильно легированные сплавы. Примером могут служить альсифер и пермаллои.
    2. Влияние давления на электрическую прочность газов.



    Другим ярким представителем развития фотонной ионизации является зависимость электропрочности газов от давления. При повышении давления выше атмосферного электропрочность газа растет. Это связано с уменьшением межмолекулярных расстоянием и снижением длины свободного пробега ионов. При снижении давления электрическая прочность газа уменьшается и даже под действием поля малой напряженности газ начинает светиться. Для случая воздуха, чем ниже давление, тем меньше длина волны испускаемого света, то есть по мере уменьшения давления цвет свечения меняется с красного до синего. При низких давлениях (менее 10-4 торр.) воздух перестает светиться - «черный вакуум». Изменения длины светового излучения связано с тем, что по мере снижения давления длина пробега ионов возрастает и ионы набирают большую кинетическую энергию. Соответственно возбужденные столкновениями с ионами электроны атомов испускают кванты большей энергии или меньшей длины. При разряжении соответствующем «черному вакууму» концентрация молекул в межэлектродном пространстве насколько мала, что длина пробега ионов сравнивается с межэлектродным промежутком. Поэтому вероятность ионизации молекул становится ничтожно малой и пробой наступает за счет вырывания электронов из электродов.

    Билет №34

    1. Принципы получения металлических материалов высокого электрического сопротивления.

    Очевидно, что для того, чтобы материал имел высокое удельное сопротивление, он должен представлять собой твердый раствор одного металла в другом. Причем хотя бы один из компонентов сплава должен быть переходным металлом. Из теории сплавов известно, что неограниченное растворение одного металла в другом возможно при близости размеров ионов и одинаковом типе кристаллических решеток.

    Материалы высокого электрического сопротивления используются для поглощения электрической энергии и преобразования ее в тепло. Очевидно, что к таким материалам будут предъявляться следующие требования:

    • Высокое удельное сопротивление

    • Высокая механическая прочность

    • Технологичность - то есть способность к сварке, пайке, высокая пластичность.

    • Высокая коррозионная стойкость.

    • Низкая стоимость.

    • Низкое значение термо- Э.Д.С. в паре с медью.

    • Малый температурный коэффициент сопротивления

    Основными носителями заряда в металлических материалах являются свободные электроны, появляющиеся при образовании металлической связи. Как известно металлическая связь образуется между атомами элементов с валентной электронной оболочкой заполненной менее чем на половину. В этом случае валентные электроны отрываются от атомов и обнажается полностью заполненная электронная оболочка. При этом валентные электроны становятся свободными, образуя «электронный газ». Ранее мы отмечали, что чем выше плотность электронного газа, тем плотнее упакована кристаллическая решетка металлов. В этой связи следует ожидать что электропроводность металлов с ГЦК решеткой будет выше, чем электропроводность металлов с ОЦК решеткой.

    Помимо концентрации электронов на электропроводность оказывает влияние и их подвижность. На подвижность электронов в основном оказывают влияние два фактора: наличие дефектов кристаллической решетки и строение внутренних электронных оболочек атомов. При любом искажении кристаллической решетки распространение электронных волн затрудняется, что аналогично снижению подвижности электронов. Резко снижает подвижность электронов наличие незаполненных внутренних электронных оболочек. В этом случае свободные электроны могут временно захватываться незаполненными внутренними оболочками атомов. Поэтому электропроводность переходных металлов существенно ниже электропроводности обычных металлов.
    2. Электрохимический пробой диэлектриков.

    Данный вид пробоя обусловлен тем, что при длительном нахождении в электрическом поле происходит изменение химического состава диэлектрика. Чем выше напряженность электри-ческого поля, тем сильнее возбуждаются молекулы диэлектрика и время, необходимое для выхода мате-риала диэлектрика из строя снижается. В то же вре-мя химически инертные диэлектрики имеют больше время работы. Зависимость времени безопасной службы материала диэлектрика от времени принято называть «кривой жизни» диэлектрика (рис.45).


    Как видно из приведенного рисунка, стабиль-ность фторопласта (кривая б) заметно выше, чем стабильность полиэтилена (кривая а). Это связано с тем, что энергия связи фтора с углеродом (450 кДж/моль) заметно выше энергии связи водорода с углеродом (290 кДж/моль). Поэтому для разрушения молекулы фторопласта нужны большие флуктуации энергии его устойчивость выше.

    Билет №35

    1. Металлические материалы высокой электропроводности.

    Основными носителями заряда в металлических материалах являются свободные электроны, появляющиеся при образовании металлической связи. Как известно металлическая связь образуется между атомами элементов с валентной электронной оболочкой заполненной менее чем на половину. В этом случае валентные электроны отрываются от атомов и обнажается полностью заполненная электронная оболочка. При этом валентные электроны становятся свободными, образуя «электронный газ». Ранее мы отмечали, что чем выше плотность электронного газа, тем плотнее упакована кристаллическая решетка металлов. В этой связи следует ожидать что электропроводность металлов с ГЦК решеткой будет выше, чем электропроводность металлов с ОЦК решеткой.

    Помимо концентрации электронов на электропроводность оказывает влияние и их подвижность. На подвижность электронов в основном оказывают влияние два фактора: наличие дефектов кристаллической решетки и строение внутренних электронных оболочек атомов. При любом искажении кристаллической решетки распространение электронных волн затрудняется, что аналогично снижению подвижности электронов. Резко снижает подвижность электронов наличие незаполненных внутренних электронных оболочек. В этом случае свободные электроны могут временно захватываться незаполненными внутренними оболочками атомов. Поэтому электропроводность переходных металлов существенно ниже электропроводности обычных металлов.

    Очевидно, что высокой электропроводностью будут обладать чистые непереходные металлы с ГЦК решеткой (Ag, Cu, Al, Au).

    Высокой механической прочностью будут обладать металлы с низкой энергией дефекта упаковки или сплавы металлов. Однако в случае образования твердого раствора помимо роста прочности увеличивается и удельное электросопротивление. Поэтому для материалов высокой электропроводности используют лишь такое легирование, когда компоненты не растворяются друг в друге.
    2. Влияние частоты электрического поля на электрическую прочность газов

    Взаимодействие ионов, ускоренных электрическим полем, с молекулами газа приводит к образованию дополнительного количества положительных ионов и электронов. Внешнее электрическое поле разносит ионы и электроны в разные стороны. Однако по мере движения ионы рекомбинируют с электронами. Таким образом, одновременно развиваются два процесса: а) размножение заряженных частиц за счет ионизации молекул и б) уменьшение количества заряженных частиц за счет их взаимной рекомбинации.

    В случае постоянного электрического поля концентрация заряженных частиц в межэлектродном пространстве зависит только от напряженности поля. При увеличении напряженности поля происходит преобладание процесса ионизации над процессом рекомбинации и при определенной напряженности поля происходит пробой.



    Процессы изменения концентрации ионов, происходящие в низкочастотных полях, аналогичны процессам в постоянном поле. Однако в высокочастотных полях концентрация заряженных частиц меняется. При достаточно высоких частотах подвижные электроны успевают сместиться на большие расстояния и достигают электродов. Малоподвижные положительные ионы с большой массой за время полу периода колебаний не успевают сместиться на сколь либо значительные расстояния и концентрация положительных ионов в межэлектродном пространстве растет. Появляется так называемый «объемный заряд». Поэтому, начиная с частот, превышающих десятки килогерц вероятность столкновения ионов с молекулами возрастает и электропрочность газов снижается (рис. 42). Дальнейший рост частоты электрического поля (или уменьшение его полу периода) приводит к тому, что за время полу периода не только положительные ионы не успевают сместиться на сколь либо значительные расстояния, но и электроны не успевают вылететь из межэлектродного пространства. Вероятность рекомбинации заряженных частиц растет и их концентрация падает. Кроме того, снижение времени полу периода требует увеличения силы, действующей на ионы, чтобы кинетической энергии хватило для ионизации молекул. Поэтому при частотах, превышающих мегагерц, электропрочность газов возрастает.
    1   2   3   4   5   6   7   8


    написать администратору сайта