Главная страница
Навигация по странице:

  • Электрич-й пробой твердых диэлектриков

  • Билет №27 1. Влияние размера зерен на коэрцитивную силу ферромагнетиков

  • 2. Потери энергии электрического поля в диэлектриках. Меры оценки потерь энергии электрического поля.

  • Билет №28 1. Изменение механических и электрических свойств металлов при холодной пластической деформации.

  • 2. Влияние температуры на диэлектрическую проницаемость сегнетоэлектриков.

  • Билет №29 1. Точечные дефекты кристаллической решетки. Влияние точечных дефектов на свойства материалов.

  • В материалах с ионной связью

  • В материалах с ковалентной связью

  • 2. Влияние состава на скорость старения диэлектриков в электрическом поле.

  • Билет №30 1. Влияние энергии межатомного взаимодействия на свойства материалов.

  • 1 Влияние температуры на тангенс угла потерь неполярных диэлектриков

  • Шпоры по Материалке. Билет 1 Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов


    Скачать 1 Mb.
    НазваниеБилет 1 Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов
    Дата24.05.2018
    Размер1 Mb.
    Формат файлаdoc
    Имя файлаШпоры по Материалке.doc
    ТипДокументы
    #44789
    страница6 из 8
    1   2   3   4   5   6   7   8

    Электрический пробой развивается практи-чески мгновенно при достижении напряженности поля равной электропрочности диэлектрика. Обычно электрический пробой наблюдается в газах, но может развиваться и в твердых и в жидких диэлектриках.

    Увеличение плотности ионов в диэлектриках (пробой) может быть вызвано развитием ударной ионизации или ионной ионизации. Для развития ударной ионизации необходимо выполнение условия: Eql=mv2/2=Eэс (2.13)

    где: Е – напряженность поля, q – заряд иона, l – длина пробега иона от одного столкновения до другого, mv2/2 – кинетическая энергия иона, Еэс – энергия электростатического взаимодействия электронов с ядрами атомов.

    При выполнении этого условия ионы, пролетая под действием электрического поля от одного столкновения со структурными единицами материала до другого, набирают кинетическую энергию, достаточную для того чтобы выбить электрон из атома. В результате столкновения появляется два дополнительных носителя заряда: электрон и новый ион. Таким образом, размножение носителей заряда возрастает в геометрической прогрессии и происходит пробой диэлектрика.

    При напряженности поля меньшей, чем та, при которой наблюдается ударная ионизация в газах может развиваться фотонная ионизация. В этом случае при столкновении иона со структурной единицей материала энергии переданной атому не достаточно для отрыва электрона от атома, поэтому возбужденные электроны испускают фотоны. При одновременном попадании нескольких фотонов на какую-либо молекулу, переданная энергия сравнивается с энергией электростатического взаимодействия электронов с ядрами и происходит ионизация.

    Для иллюстрации развития фотонной ионизации рассмотрим зависимость электропрочности газов от расстояния между электродами (рис. 40).



    Очевидно, что длина пробега носителей заряда не зависит от расстояния между электродами, а зависит только от давления газа. Поэтому можно ожидать, что электропрочность газов не будет зависеть от расстояния между электродами, эксперименты показывают обратное. При увеличении расстояния между электродами напряжение пробоя не линейно повышается, а электропрочность падает. Природа такой зависимости состоит в том, что при увеличении расстояния между электродами, возрастает объем заключенного между ними газа. Следовательно, увеличивается количество ионов между электродами. Рост столкновений ионов и молекулами газа приводит к возрастанию количества фотонов, образующихся в единицу времени. Поэтому вероятность попадания нескольких фотонов на одну и ту же молекулу увеличивается.

    Другим ярким представителем развития фотонной ионизации является зависимость электропрочности газов от давления. При повышении давления выше атмосферного электропрочность газа растет. Это связано с уменьшением межмолекулярных расстоянием и снижением длины свободного пробега ионов.



    При снижении давления электрическая прочность газа уменьшается и даже под действием поля малой напряженности газ начинает светиться. Для случая воздуха, чем ниже давление, тем меньше длина волны испускаемого света, то есть по мере уменьшения давления цвет свечения меняется с красного до синего. При низких давлениях (менее 10-4 торр.) воздух перестает светиться - «черный вакуум». Изменения длины светового излучения связано с тем, что по мере снижения давления длина пробега ионов возрастает и ионы набирают большую кинетическую энергию. Соответственно возбужденные столкновениями с ионами электроны атомов испускают кванты большей энергии или меньшей длины. При разряжении соответствующем «черному вакууму» концентрация молекул в межэлектродном пространстве насколько мала, что длина пробега ионов сравнивается с меж-электродным промежутком. Поэтому вероятность ионизации молекул становится ничтожно малой и пробой наступает за счет вырывания электронов из электродов.

    Электрич-й пробой твердых диэлектриков

    При рассмотрении электрического пробоя в твердых диэлектриках следует иметь в виду, что электрическая прочность зависит не только от материала, но и от формы изолятора. Дело в том, что в твердых диэлектриках помимо сквозного электрического пробоя может развиваться поверхностный пробой.

    Для развития сквозного пробоя требуется очень высокая напряженность электрического поля. Это связано с тем, что плотность твердых диэлектриков велика и длина пробега ионов мала. Следовательно, для того, чтобы ион набрал достаточную кинетическую энергию, (mv2/2=Eql) нужна высокая напряженность электрического поля. Вместе с тем, на поверхности любого материала имеется слой адсорбированных молекул. Из окружающего пространства (из воздуха) на поверхность могут адсорбироваться молекулы азота, кислорода, углекислого газа, воды и так далее. В тех местах, где адсорбируются молекулы воды и углекислого газа, образуется угольная кислота. Иначе говоря, на поверхности появляются участки с повышенной концентрацией ионов. Таким образом, вероятность ионизации молекул на поверхности диэлектрика становится выше, а электропрочность снижается.

    Другой важной особенностью пробоя твердых диэлектриков является снижение их электрической прочности после пробоя. Пробой сопровождается плавлением или прожиганием диэлектрика. При повторном приложении напряжения пробой возникает в этой области при сравнительно малой напряженности поля. Особенно опасен пробой для органических диэлектриков, в месте пробоя которых происходит разложение органики и выделение элементарного углерода. После пробоя жидкостей или газов высокая подвижность молекул приводит к исчезновению канала пробоя. Поэтому, хотя газовая изоляция и имеет меньшую электропрочность, но после пробоя эксплуатационные свойства материала восстанавливаются, то есть она более надежна.

    Билет №27

    1. Влияние размера зерен на коэрцитивную силу ферромагнетиков

    Величина коэрцитивной силы Нс растет при уменьшении среднего размера частиц до некоторого критического размера. Для таких металлов как Fe, Ni, Co максимальное значение Нс достигается для частиц со средним диаметром 20...25, 50...70 и 20 нм, соответственно.

    Если после намагничивания ферромагнетика до насыщения отключить внешнее магнитное поле намагниченность ферромагнетика полностью не снимается и сохраняется остаточная индукция (Вr). Это вызвано тем, что дефекты структуры, препятствующие перемещению границ доменов при намагничивании, препятствуют обратному смещению границ доменов при размагничивании. Для того чтобы снять остаточную индукцию необходимо приложить поле обратной полярности. При некотором значении напряженности поля, называемом коэрцитивной силойс), индукция исчезнет. Дальнейшее увеличение напряженности поля в обратном направлении приведет к намагничиванию ферромагнетика. Естественно, что знак вектора магнитной индукции при этом поменяется. Отключение внешнего магнитного поля вновь приведет к появлению остаточной индукции, для снятия которой необходимо приложить коэрцитивную силу. Таким образом, при нахождении ферромагнетика в переменном магнитном поле появляется петля гистерезиса. Чем больше в материале дефектов структуры, затрудняющих смещение границ зерен, тем выше значение коэрцитивной силы и шире петля гистерезиса.
    2. Потери энергии электрического поля в диэлектриках. Меры оценки потерь энергии электрического поля.
    Под действием электр-ого поля в диэлек-ке развиваются два основных процесса: поляризация и сквозная электропр-сть. Развитие этих процессов может привести к рассеянию энергии электрич-ого поля в диэлек-ке в виде тепла. Так, под действием электр-ого поля свободные носители заряда набирают кинет-ую энергию и, сталкиваясь с молекулами вещ-ва, передают им эту энергию. Т-м об-ом, энергия электрич-ого поля трансформируется в тепловую энергию материала. Кроме того, в случае, когда структурные единицы вещ-ва (молекулы) полярны, внешнее электр-ое поле совершает работу по повороту диполей по полю, и, , энергия поля вновь рассеивается в материале.

    Для количеств-ой оценки величины диэлектр-их потерь используют понятие тангенс угла диэлектрических потерь.

    В идеальном диэлектрике сдвиг фаз между напряжением и реактивной составляющей тока равен 90 градусам. В реальном диэлектрике появляется активная составляющая тока. Поэтому векторная диаграмма токов и напряжений выглядит, как показано на рисунке 3.10.



    Рис. 3.10. Векторная диаграмма токов и напряжений в реальном диэлектрике

    Зная величину напряжения, круговую частоту и емкость, можно определить реактивную составляю-щую тока:

    Ip=U**C . (7)

    Тогда активная составляющая тока определится как:

    Ia=Ip*tg . (8)

    Рассеиваемую мощность можно определить следующим образом:

    Р=UIa= UCtg . (9)

    Таким образом, tg можно использовать в качестве меры потерь энергии поля в диэлектрике.

    Билет №28

    1. Изменение механических и электрических свойств металлов при холодной пластической деформации.

    В основе пластической деформации лежит необ-ратимое перемещение одних частей кристалла отно-сит других. После снятия нагрузки исчезает только упругая состав-ляющая деформации. Пластичность (способность металлов перед разрушением прете-рпевать значительную пластическую деформацию) является одним из важней-ших свойств металлов. Благодаря пластичности возмож-на обработка металлов давлением. Пластичность позволяет пере-распределять локальные напряжения равномерно по всему объему металла, что снижает опасность разрушения. Для металлов характерно большее сопротивление растяжению или сжатию, чем сдвигу след-но процесс пластической деформации предс-тавляет собой процесс скольжения одной части кристалла относит другой по кристаллографической плоскости или плоскостям скольжения с более плотной упаковкой атомов, где наименьшее сопро-тивление сдвигу. Скольже-ние осуществляется в результате перемещения в кристалле дислокаций. В результате скольжения кристаллическое строение перемещающихся частей не меняется.

    Пластическая деформация способствует упроч-нению металлов, уменьшению плотности, увели-чению электри-ческого сопротивления, умень-шению теплопроводности, снижению устойчивости против коррозии.

    Холодную деформацию проводят при температурах ниже температуры рекристаллизации под действием пластической деформации. После снятия нагрузки, превышающей предел текучести, в образце остается остаточная деформация. При повторном нагружении повышается предел текучести металла и снижается его способность к пластической деформации, т.е. происходит упрочнение металла. При деформации зёрна меняют свою форму и ориентировку, образуя волокнистую структуру с преимущественной ориентировкой кристал-лов. Происходит разворот беспорядочно ориентирован-ных зёрен осями наибольшей прочности вдоль направле-ния деформации. Зёрна деформируются и сплющивают-ся, вытягиваясь в направлении действующих сил, образуя волокнистую или слоистую структуру. Чем выше степень деформации, тем больше зёрен получает преимуществен-ную ориентировку, механические свойства, характери-зующие сопротивление деформации, улучшаются, происходит деформационное упрочнение, а способность к пластической деформации снижается.
    2. Влияние температуры на диэлектрическую проницаемость сегнетоэлектриков.

    В сегнетоэле-ах в опред-ом диапазоне темпер-р наблюдается спонтанная или самопроизвольная поляр-ия.

    Существенное влияние на диэлектрическую проницаемость оказывает температура. При повышении температуры кинетическая энергия ангармонических колебаний ионов возрастает, и электростатическая связь между ионами ослабевает. Внешнему полю легче перебросить ионы из одного положения в другое, соответственно, поляризация и диэлектрическая проницаемость возрастают. Максимум диэлектрической проницаемости наблюдается при температуре Кюри.

    Легирование сегнетоэлектриков приводит к изменению энергии связи между ионами и дает возможность изменять температуру Кюри и величину диэлектрической проницаемости.

    Билет №29

    1. Точечные дефекты кристаллической решетки. Влияние точечных дефектов на свойства материалов.

    К ним относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки.

    Представление о вакансиях было впервые введено Я. И. Френкелем для объяснения процессов диффузии в металлах - материалах с плотноупакованной кристаллической решеткой.

    При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий.

    Согласно модели Френкеля, при образовании вакансий атом из узла кристаллической решетки перепрыгивает в междоузлие, и появляется пара дефектов - вакансия и межузельный атом, или пара Френкеля.

    В материалах с ионной связью между атомами основным носителем заряда являются ионы. При появлении вакансий перемещение ионов облегчается, а следовательно, падает удельное электросопротивление. При появлении в материале примесей кристаллическая решетка искажается, энергия материала локально повышается, что способствует облегчению выхода иона из потенциальной ямы. Таким образом, появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью.

    В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью.

    Присутствие неизовалентных примесей ведет к появлению в материале дырок или свободных электронов, то есть к повышению концентрации носителей заряда.
    2. Влияние состава на скорость старения диэлектриков в электрическом поле.

    Данный вид пробоя обусловлен тем, что при длительном нахождении в электрическом поле происходит изменение химического состава диэлектрика. Чем выше напряженность электри-ческого поля, тем сильнее возбуждаются молекулы диэлектрика и время, необходимое для выхода мате-риала диэлектрика из строя снижается. В то же вре-мя химически инертные диэлектрики имеют больше время работы. Зависимость времени безопасной службы материала диэлектрика от времени принято называть «кривой жизни» диэлектрика (рис.45).


    Как видно из приведенного рисунка, стабиль-ность фторопласта (кривая б) заметно выше, чем стабильность полиэтилена (кривая а). Это связано с тем, что энергия связи фтора с углеродом (450 кДж/моль) заметно выше энергии связи водорода с углеродом (290 кДж/моль). Поэтому для разрушения молекулы фторопласта нужны большие флуктуации энергии его устойчивость выше.

    Билет №30

    1. Влияние энергии межатомного взаимодействия на свойства материалов.

    Любой материал представляет собой продукт взаимодействия огромного количества атомов, и свойства материала зависят от характера взаимодействия этих атомов. Зная характер взаимодействия атомов, можно прогнозировать свойства материалов. Поскольку взаимодействие множества атомов анализировать достаточно сложно, вначале для простоты рассмотрим взаимодействие двух атомов.

    Между двумя атомами действует сила притяжения, она убывает обратно пропорционально квадрату расстояния между атомами. Помимо силы притяжения, между атомами действует и сила взаимного отталкивания, которая обратно пропорциональна расстоянию в степени n, где n больше 2.

    В том случае, когда взаимодействует множество атомов, смещение любого из них приводит к росту энергии системы, Поэтому потенциальную кривую можно представить в виде периодической функции (рис. 2).



    Рис. 2. Зависимость энергии потенц-го взаимодейс-твия (Wp) от расстояния между атомами (x) для случая взаимодействия множества атомов.

    При минимуме энергии системы расстояния между атомами одинаковы и равны r0. Вдоль любого направления расстояния будут равны r0, хотя эти расстояния по разным направлениям будут разными. Расстояние между атомами вдоль какого-либо направления принято обозначать а.

    Для переброса атома из одного равновесного положения в другое требуется повышение энергии. Поэтому в том случае, когда энергия системы минимальна или незначительно отличается от минимальной, атомы не могут перемещаться из одного положения в другое, и мы имеем дело с твердым телом. При значительном повышении энергии системы атомы активно колеблются, обмениваются энергией - и в результате могут переходить из одного положения в другое. В этом случае мы имеем дело с жидким телом. Дальнейший рост энергии системы приводит к выходу атомов из потенциальной ямы, они перестают взаимодействовать друг с другом, могут занимать различные положения – и мы имеем дело с газом.
    2. Влияние температуры на тангенс угла потерь полярных и неполярных диэлектриков

    1 Влияние температуры на тангенс угла потерь неполярных диэлектриков:

    С увеличением температуры концентрация носителей заряда в диэлектрике повышается. Поэтому вероятность столкновения носителя заряда со структурной единицей вещества также растет. Следовательно, при увеличении температуры потери на сквозную электропроводность возрастают.

    В неполярных диэлектриках реализуется упругая электронная или упругая ионная поляризация. Как известно, при развитии упругих процессов потерь энергии нет, поэтому в неполярных диэлектриках основной вид потерь - потери за счет сквозной электропроводности.


    1   2   3   4   5   6   7   8


    написать администратору сайта