Главная страница

Биология Ярыгин 2003. Биология под редакцией академика рамн профессора В. Н. Ярыгина в двух книгах


Скачать 5.71 Mb.
НазваниеБиология под редакцией академика рамн профессора В. Н. Ярыгина в двух книгах
АнкорБиология Ярыгин 2003.pdf
Дата24.01.2018
Размер5.71 Mb.
Формат файлаpdf
Имя файлаБиология Ярыгин 2003.pdf
ТипУчебник
#14835
страница8 из 37
1   ...   4   5   6   7   8   9   10   11   ...   37
3.4.2.3. Изменения нуклеотидных последовательностей ДНК.
Генные мутации
Нескорректированные изменения химической структуры генов,
воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков, называют генными мутациями.
Изменения структуры ДНК, образующей ген, можно разделить натри группы.
Мутации первой группы заключаются в замене одних оснований другими. Они составляют около 20% спонтанно возникающих генных изменений. Вторая группа мутаций обусловлена сдвигом рамки считывания, происходящим при изменении количества нуклеотидных пар в составе гена. Наконец, третью группу представляют мутации, связанные с изменением порядка нуклеотидных последовательностей в пределах гена (инверсии).
Мутации по типу замены азотистых оснований. Эти мутации происходят в силу ряда конкретных причин. Одной из них может быть возникающее случайно или под влиянием конкретных химических агентов изменение структуры основания,
уже включенного в спираль ДНК. Если такая измененная форма основания остается незамеченной ферментами репарации, то при ближайшем цикле репликации она может присоединять к себе другой нуклеотид. Примером может служить дезаминирование цитозина, превращающегося в урацил самопроизвольно или под влиянием азотистой кислоты (рис. 3.18). Образующийся при этом урацил, незамеченный ферментом ДНК-гликозилазой, при репликации соединяется с аденином, который впоследствии присоединяет тимидиловый нуклеотид. В
результате пара Ц—Г замещается в ДНК парой ТА (рис.
3.19,
I).
Дезаминирование метилированного цитозина превращает его в тимин (см. рис. Тимидиловый нуклеотид, являясь естественным компонентом ДНК, не обнаруживается ферментами репарации как изменение и при следующей репликации присоединяет адениловый нуклеотид. В результате вместо пары Ц—Г в молекуле ДНК также появляется пара ТА (рис. 3.19, II).
Рис. 3.18. Спонтанное дезаминирование цитозина
Другой причиной замены оснований может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего химически измененную форму основания или его аналог. Если эта ошибка остается незамеченной ферментами репликации и репарации, измененное основание включается в процесс репликации,
что нередко приводит к замене одной пары на другую. Примером этого может служить присоединение входе репликации к аденину материнской цепи нуклеотида с 5-бромурацилом (5-БУ), аналогичного тимидиловому нуклеотиду. При последующей репликации 5-БУ охотнее присоединяет к себе не аденина гуанин.
Гуанин входе дальнейшего удвоения образует комплементарную парус цитозином.
В итоге пара АТ заменяется в молекуле ДНК парой ГЦ (рис. 3.20).
Рис. 3. 19. Мутации по типу замены основания
(дезаминирование азотистых оснований вцепи ДНК — превращение цитозина в урацил, замена Ц—Г-пары на Т—А-пару;
II — превращение метил-цитозина в тимин, замена Ц—Г-пары на Т—А-пару
Из приведенных примеров видно, что изменения структуры молекулы ДНК по типу замены оснований возникают либо до, либо в процессе репликации первоначально водной полинуклеотидной цепи. Если такие изменения не исправляются входе репарации, то при последующей репликации они становятся достоянием обеих цепей ДНК.
Рис. 3.20. Мутации по типу замены оснований
включение аналога азотистого основания при репликации ДНК)
Следствием замены одной пары комплементарных нуклеотидов на другую является образование нового триплета в нуклеотидной последовательности ДНК,
кодирующей последовательность аминокислот в пептидной цепи. Это может и не отразиться на структуре пептида в том случае, если новый триплет будет
«синонимом» прежнего, те. будет кодировать туже аминокислоту. Например,
аминокислота валин шифруется четырьмя триплетами ЦАА, ЦАГ, ЦАТ, ЦАЦ.
Замена третьего основания в любом из этих триплетов не изменит его смысла
(вырожденность генетического кода).
В том случае, когда вновь возникший триплет шифрует другую аминокислоту,
изменяются структура пептидной цепи и свойства соответствующего белка. В
зависимости от характера и места случившейся замены специфические свойства белка изменяются в разной степени. Известны случаи, когда замена лишь одной аминокислоты в пептиде существенно влияет на свойства белка, что проявляется в изменении более сложных признаков. Примером может служить изменение свойств гемоглобина человека при серповидноклеточной анемии (рис. 3.21). В таком гемоглобине) (в отличие от нормального НА) — в р-глобиновых цепях в шестом положении глутаминовая кислота заменена валином. Это является следствием замены одного из оснований в триплете, шифрующем глутаминовую кислоту (ЦТТ или ЦТЦ). В результате появляется триплет, шифрующий валин (ЦАТ
или ЦАЦ. В данном случае замена одной аминокислоты в пептиде существенно изменяет свойства глобина, входящего в состав гемоглобина (снижается его способность связываться су человека развиваются признаки серповидноклеточной анемии.
В некоторых случаях замена одного основания на другое может привести к появлению одного из нонсенс-триплетов (АТТ, АТЦ, АЦТ), не шифрующего никакой аминокислоты. Последствием такой замены будет прерывание синтеза пептидной цепи. Подсчитано, что замены нуклеотидов водном триплете приводят в случаев к образованию триплетов-синонимов; в 2—3 бессмысленных триплетов, в 70— 75% к возникновению истинных генных мутаций.
Таким образом, мутации по типу замены оснований могут возникать как в результате спонтанных изменений структуры основания водной из цепей уже существующей двойной спирали ДНК, таки входе репликации во вновь синтезируемой цепи. В том случае, если эти изменения не исправляются в процессе репарации (или, наоборот, возникают входе репарации, они фиксируются в обеих цепях и далее будут воспроизводиться в следующих циклах репликации.
Следовательно, важным источником возникновения таких мутаций являются нарушения процессов репликации и репарации.
Мутации со сдвигом рамки считывания. Этот тип мутаций составляет значительную долю спонтанных мутаций. Они происходят вследствие выпадения или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов. Большая часть изученных мутаций, вызывающих
сдвиг рамки, обнаружена в последовательностях, состоящих из одинаковых нуклеотидов.
Изменению числа нуклеотидных пар вцепи ДНК способствуют воздействия на генетический материал некоторых химических веществ, например акридиновых соединений. Деформируя структуру двойной спирали ДНК, они приводят к вставке дополнительных оснований или их выпадению при репликации. Примером служат мутации, полученные у фага Т при воздействии профлавина. Они состоят во включении или удалении всего одной нуклеотидной пары. Важной причиной изменения количества нуклеотидных пар в гене по типу крупных делений
(выпадений) может быть рентгеновское облучение. У плодовой мухи, например,
известна мутация гена, контролирующего окраску глаза, которая вызывается облучением и состоит в делении порядка 100 нуклеотидных пар.
Рис. 3.21. Плейотропный эффект замены одной аминокислоты вцепи гемоглобина человека, приводящей к развитию серповидноклеточной анемии
Большое число мутаций по типу вставок происходит вследствие включения в последовательность нуклеотидов подвижных генетических элементов

транспозонов. Транспозоны

это достаточно протяженные нуклеотидные последовательности, встроенные в геномы эу- и прокариотических клеток,
способные самопроизвольно менять свое положение (см. разд. С
определенной вероятностью вставки и делении могут возникать в результате ошибок рекомбинации при неравноценном внутригенном кроссинговере (рис. 3.22).
Рис. 3.22. Мутации со сдвигом рамки считывания (неравноценный обмен при внутригенном кроссинговере — разрывы аллельпых генов в разных участках и обмен фрагментами между ними — выпадение й и й пар нуклеотидов, сдвиг рамки считывания удвоение й и й пар нуклеотидов, сдвиг рамки считывания
Рис. 3.23. Следствие изменения количества нуклеотидных пар в молекуле ДНК
Сдвиг рамки считывания в результате вставки одного нуклеотида в кодогенную цепь приводит к изменению состава зашифрованного в ней пептида
При непрерывности считывания и неперекрываемости генетического кода изменение количества нуклеотидов, как правило, приводит к сдвигу рамки считывания и изменению смысла биологической информации, записанной в данной последовательности ДНК (рис. 3.23). Однако, если количество вставленных или утраченных нуклеотидов кратно трем, сдвига рамки может не произойти, но это приведет к включению дополнительных аминокислот или выпадению части их из полипептидной цепи. Возможным следствием сдвига рамки является возникновение нонсенс-триплетов, ведущее к синтезу укороченных пептидных цепей
Мутации по типу инверсии нуклеотидных последовательностей в гене.
Данный тип мутаций происходит вследствие поворота участка ДНК на Обычно этому предшествует образование молекулой ДНК петли, в пределах которой репликация идет в направлении, обратном правильному.
В пределах инвертированного участка нарушается считывание информации, в результате изменяется аминокислотная последовательность белка. Элементарные единицы изменчивости

генетического материала. Мутон. Рекон.
Ген представляет собой элементарную единицу функции наследственного
материала. Это означает, что фрагмент молекулы ДНК, соответствующий отдельному гену и определяющий благодаря содержащейся в нем биологической информации возможность развития конкретного признака, является далее неделимым в функциональном отношении. Сведения о генных мутациях,
изложенные выше, указывают назначение изменений химической структуры,
затрагивающих не весь гена отдельные его участки, вследствие чего появляются новые варианты признака.
Минимальное количество наследственного материала, способное, изменяясь,
приводить к появлению вариантов признака, соответствует элементарной единице мутационного процесса и называется мутоном. Рассмотренные выше примеры генных мутаций свидетельствуют о том, что достаточно заменить одну пару комплементарных оснований в гене, чтобы изменились свойства кодируемого им белка. Таким образом, мутон соответствует одной паре комплементарных нуклеотидов.
Часть генных мутаций по типу вставок и выпадений нуклеотидных пар происходит вследствие неравноценного обмена между молекулами ДНК при кроссинговере, те. при нарушении рекомбинации между ними. Это сопровождается сдвигом рамки считывания и приводит к нарушению синтеза пептидной цепи с заданными свойствами. Наблюдения показывают, что для искажения записанной в гене биологической информации достаточно вставки или выпадения одной пары нуклеотидов. Из сказанного следует, что элементарная единица рекомбинации —
рекон — на молекулярном уровне соответствует одной паре нуклеотидов.
Возникающие самопроизвольно или под влиянием различных внешних воздействий изменения нуклеотидных последовательностей приводят к тому, что один и тот же ген может существовать в нескольких вариантах, различающихся по содержащейся в них биологической информации. Конкретную форму существования гена, определяющую возможность развития конкретного варианта данного признака, называют аллелем. Аллели гена располагаются водном и том же участке—локусе—определенной хромосомы, которая в норме может одновременно содержать лишь один из серии аллелей. Это делает аллели альтернативными
(взаимоисключающими) вариантами существования гена.
Изменения химической структуры могут возникать в различных участках
гена. Если они совместимы с жизнью, те. не приводят к гибели клеток или организмов — носителей данных мутаций, все они сохраняются в генофонде вида.
Присутствие в генофонде вида одновременно различных аллелей гена называют множественным аллелизмом. Примером этому служат разные варианты окраски глазу плодовой мухи белая, вишневая, красная, абрикосовая, эозиновая,—
обусловленные различными аллелями соответствующего гена. У человека, как и у других представителей органического мира, множественный аллелизм свойствен многим генам. Так, три аллеля гена I определяют групповую принадлежность крови по системе АВ0 (I
A
, I
B
, I
0
). Два аллеля имеет ген, обусловливающий резус- принадлежность. Более ста аллелей насчитывают гены α- и полипептидов гемоглобина.
Причиной множественного аллелизма являются случайные изменения структуры гена (мутации, сохраняемые в процессе естественного отбора в генофонде популяции. Многообразие аллелей, рекомбинирующихся при половом размножении, определяет степень генотипического разнообразия среди представителей данного вида, что имеет большое эволюционное значение, повышая жизнеспособность популяций вменяющихся условиях их существования. Кроме эволюционного и экологического значения аллельное состояние генов оказывает большое влияние на функционирование генетического материала. В диплоидных соматических клетках эукариотических организмов большинство генов представлено двумя аллелями, которые совместно влияют на формирование признаков. Функциональная классификация генных мутаций

Изменения структуры гена, как правило, являются неблагоприятными, снижая жизнеспособность клетки, организма (вредные мутации, и иногда приводят к их гибели (летальные мутации. Реже возникающие мутации существенно не отражаются на жизнеспособности их носителей, поэтому их рассматривают как
нейтральные.
Наконец, крайне редко возникают аллели, оказывающие благоприятное действие (полезные мутации
),
обеспечивая их носителям преимущественное выживание. В большинстве случаев вновь возникший аллель гена выступает как рецессивный по отношению к распространенному в природе аллелю дикого типа, те. не проявляется в сочетании с ним. Но иногда мутантная форма гена может быть доминантной, те. подавлять проявление дикого аллеля,
который чаще встречается в генофонде популяции. Механизмы, снижающие неблагоприятный эффект
генных мутаций
В результате генных мутаций изменяется смысл биологической информации.
Последствия этого могут быть двоякого рода. В условиях обитания, изменяющихся незначительно, новая информация обычно снижает выживаемость. При резкой смене условий существования, при освоении новой экологической ниши наличие разнообразной информации полезно. В связи с этим интенсивность мутационного процесса в природных условиях поддерживается на уровне, не вызывающем катастрофического снижения жизнеспособности вида. Важная роль в ограничении неблагоприятных последствий мутаций принадлежит
антимутационным
механизмам, возникшим в эволюции.
Некоторые из этих механизмов рассмотрены выше. Речь идет об особенностях функционирования ДНК-полимеразы, отбирающей требуемые нуклеотиды в процессе репликации ДНК, а также осуществляющей
самокоррекцию
при образовании новой цепи ДНК наряду с редактирующей эндонуклеазой. Подробно разобраны различные механизмы репарации структуры ДНК, роль вырожденности
генетического кода (см. разд. 3.4.3.2). Решением этой задачи служит триплетность биологического кода, которая допускает минимальное число замен внутри триплета,
ведущих к искажению информации. Так, 64% замен третьего нуклеотида в триплетах не дает изменения их смыслового значения. Правда, замены второго нуклеотида в 100% приводят к искажению смысла триплета.
Фактором защиты против неблагоприятных последствий генных мутаций служит парность хромосом в диплоидном кариотипе соматических клеток эукариот.
Парность аллелей генов препятствует фенотипическому проявлению мутаций, если они имеют рецессивный характер.
Определенный вклад в снижение вредных последствий генных мутаций вносит явление
экстракопирования генов,
кодирующих жизненно важные макромолекулы. Оно заключается в наличии в генотипе нескольких десятков, а иногда и сотен идентичных копий таких генов. Примером могут служить гены рРНК, тРНК, гистоновых белков, без которых жизнедеятельность любой клетки невозможна. При наличии экстракопий мутационное изменение водном или даже нескольких одинаковых генах не ведет к катастрофическим для клетки последствиям. Копий, остающихся неизменными, вполне достаточно, чтобы обеспечить нормальное функционирование.
Существенное значение имеет также функциональная неравнозначность замен

аминокислот в полипептиде. Если новая и сменяемая аминокислоты сходны по физико-химическим свойствам, изменения третичной структуры и биологических свойств белка незначительны. Так, мутантные гемоглобины HbS и НЬС человека отличаются от нормального гемоглобина НЬА заменой в м положении р-цепи глутаминовой кислоты соответственно на валин или лизин. Первая замена резко изменяет свойства гемоглобина и приводит к развитию тяжелого заболевания серповидноклеточной анемии. При второй замене свойства гемоглобина изменяются в гораздо меньшей степени. Причиной этих различий является то, что глутаминовая кислота и лизин проявляют сходные гидрофильные свойства, тогда как валин — это гидрофобная аминокислота
Таким образом, перечисленные механизмы способствуют сохранению отобранных входе эволюции генов и одновременно накоплению в генофонде популяции различных их аллелей, формируя резерв наследственной изменчивости.
Последний определяет высокую эволюционную пластичность популяции, т.е.
способность выживать в разнообразных условиях. Использование генетической информации

в процессах жизнедеятельности. Роль РНК в реализации наследственной информации
Наследственная информация, записанная с помощью генетического кода,
хранится в молекулах ДНК и размножается для того, чтобы обеспечить вновь образуемые клетки необходимыми инструкциями для их нормального развития и функционирования. Вместе стем непосредственного участия в жизнеобеспечении клеток ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, сохраняемой в ДНК, в рабочую форму, играют
рибонуклеиновые кислоты — РНК.
В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов,
содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований аденин, гуанин, урацил или цитозин. РНК синтезируется на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности и антипараллельности, причем аденину ДНК в РНК комплементарен урацил. Все многообразие РНК, действующих в клетке, можно разделить натри основных вида:
мРНК, тРНК, рРНК.
1   ...   4   5   6   7   8   9   10   11   ...   37


написать администратору сайта