Главная страница

Дипломная работа с элементами исследования. Дипломная работа Разработка и исследование алгоритмов обнаружения сигналов с эллипсными несущими


Скачать 1.79 Mb.
НазваниеДипломная работа Разработка и исследование алгоритмов обнаружения сигналов с эллипсными несущими
АнкорДипломная работа с элементами исследования.docx
Дата22.05.2018
Размер1.79 Mb.
Формат файлаdocx
Имя файлаДипломная работа с элементами исследования.docx
ТипДиплом
#19537
страница5 из 15
1   2   3   4   5   6   7   8   9   ...   15

2.3. Селиус. Разнообразие форм селиусоидального колебания


Объектом исследований для последующих частей дипломной работы из всего многообразия эллипсных функций был выбран эллипсный синус, который задается следующей формулой:



Для краткости эллипсный синус будет называться селиусом. Получается, что селиус является псевдонимом эллипсного синуса. Сигналом называется изменяющаяся во времени физическая величина, отображающая передаваемое сообщение. Поэтому представим селиус во временной области следующим образом:



где

А – амплитуда, ω – частота, φ0 – начальная фаза,

параметр формы, фаза всплеска,

время.

По аналогии с синусоидой колебание, реализуемое во времени, будет называться селиусоидой. Таким образом, селиусоида– это временной колебательный процесс, изменяющийся по закону селиуса.
В последующих частях дипломной работы будут рассмотрены только функции, представляющие собой селиус с различными параметрами. Именно селиус будет рассматриваться в качестве несущего колебания.

Полученная функция является пятипараметрическим обобщением гармонической функций, впервые предложенного Ч. И. Мастюковым, построенного путем специфической суперпозиции двух трехпараметрических гармонических функций с добавлением к традиционным для гармонических колебаний в радиотехнике амплитудой А, угловой частотой ω и начальной фазой φ0 и еще двух параметров, от которых зависит форма сигнала – параметра формы и фазы всплеска . Селиус имеет богатое разнообразие форм в зависимости от параметра формы и фазы всплеска. В частности при и , он становится синусоидой. При других значениях своих специфических параметров селиус может быть использован в качестве сложного колебания. [3]

На рис.2.9 показаны осциллограммы селиуса при фазе всплеска и при следующих значениях параметра формы: , , , .
c:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\эль0,1.pngc:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\эль0,3.png

c:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\эль3.pngc:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\эль10.png

рис.2.9

Видно, что колебание расширяется и стремится к меандру, при стремлении параметра формы к нулю, и наоборот, при увеличении l, колебание «сужается».

На рис.2.10 на двух верхних графиках показаны осциллограммы селиуса при параметре формы и при следующих значениях фазывсплеска и , а на двух нижних графиках показаны осциллограммы селиуса при параметре формы и таких же значениях фазы всплеска и .

c:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\эль0,1пси20.png c:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\эль0,1пси60.png

c:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\эль10пси20.png c:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\эль10пси60.png

рис.2.10

Из графиков следует, что колебание меняет свой вид (форму) в зависимости от фазы всплеска, при этом также меняется амплитуда колебания.

На рис.2.11показаны графики селиусоидального колебания при изменении параметра формы от 0.01 до 1000 и фазе всплеска равной нулю.

c:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\варэльпси0общая.png

Осциллограммы sel(t) в зависимости от параметра формы l, при ψ= 0.

рис.2.11

По графику можно заметить, что при стремящемся к бесконечности селиус «ссужается» до дельта импульса, а при стремящемся к нулю он «расширяется» до меандра.

На рис.2.12 показаны осциллограммы селиуса при параметре формы и при значениях фазы всплеска и , а на рис.2.13 показаны осциллограммы селиуса при параметре формы и таких же значениях фазы всплеска .
c:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\варпсиэль0,1общая.png

Осциллограммы sel(t) в зависимости от фазы всплеска, при l = 0,1.

рис.2.12

c:\users\dns\desktop\каи 5курс 1 семестр\с ш м чабдаровым\картинки для доклада\верные а и бэ составляющие\для презентации\варпсиэль10общая.png

Осциллограммы sel(t) в зависимости от фазы всплеска, при l = 10.

рис.2.13

Выводы:

  1. Замечено, что график эллипсного тангенса аналогичен по форме моноциклу гаусса. Откуда можно заключить, что математическое описание моноцикла гаусса эллипсным тангенсом позволит параметрическим образом управлять формой импульса Гусса.

  2. Были получены формулы периодических функций эллипсной тригонометрии.

  3. Показана связь изменения конкретных параметров с определенными изменениями форм функций, а также связь эллиспных функций с функциями круговой тригонометрии.

  4. Аналитическими выражениями эллипсной тригонометрии можно описать эллипсные функции, гармонические функции и единичные импульсы «без несущей», а также управлять их параметрами.

  5. Получена достаточная математическая основа для исследования радиофизических характеристик полученных колебаний.


Поскольку в данной дипломной работе впервые предлагается использование эллипсных функций (селиусоиды) в качестве несущего колебания, то необходимо исследовать их радиофизические свойства. В свою очередь исследование радиофизических характеристик необходимо для ответа на вопрос о возможности использования данного типа колебаний на практике.

1   2   3   4   5   6   7   8   9   ...   15


написать администратору сайта