Доказательства роли ДНК в передаче наследственной информации. Опыты Гриффитса, Эвери, МакЛеода и МакКарти. Трансформация
Скачать 0.83 Mb.
|
Инверсия — изменение структуры хромосомы, вызванное поворотом на 180° одного из внутренних её участков. Инсерция - тип хромосомной перестройки, заключающийся в появлении вставки в каком-либо участке нуклеотидной последовательности. Транслока́ция — тип хромосомных мутаций, при которых происходит перенос участка хромосомы на негомологичную хромосому. Отдельно выделяют реципрокные транслокации, при которых происходит взаимный обмен участками между хромосомами, и Робертсоновскиетранслокации, или центрические слияния, при которых происходит слияние акроцентрических хромосом с полной или частичной утратой материала коротких плеч. 30. Генные мутации: транзиции, трансверсии, сдвиг рамки считывания, нонсенс -, миссенс - и сейсменс - мутации. Нейтральная мутации (молчащая мутация) — мутация не имеет фенотипи-ческого выражения (например, в результате вырожденности генетического кода). Миссенс-мутация — замена нуклеотида в кодирующей части гена — приводит к замене аминокислоты в полипептиде. Нонсенс-мутация — замена нуклеотида в кодирующей части гена — приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции. Регуляторная мутация — мутация в 5'- или З'-нетранслируемых областях гена, такая мутация нарушает экспрессию гена. Динамические мутации — мутации, обусловленные увеличением числа три-нуклеотидных повторов в функционально значимых частях гена. Такие мутации могут привести к торможению или блокаде транскрипции, приобретению белковыми молекулами свойств, нарушающих их нормальный метаболизм. Сейменс-мутация вырожденный кодон замещается на другой. поскольку нас 20 аминокислот, а число кодонов 3^4=64, следовательно несколько кодонов выделяет одну аминокислоту -вырожденность кодонов и замена одного вырожденного кодона на другой вырожденный кодон не приводит к изменению белка сдвиг рамки считывания- вставка или выпадение нескольких нуклиновых кислот, что приводит к изменению во всей дальнейшей последовательности кодонов Транзиции- тип мутаций, заключающихся в замене азотистого основания в молекуле дезоксирибонуклеиновой кислоты (ДНК). При Т. одно пуриновое основание заменяется на др. пуриновое (аденин на тимин, или наоборот), а пиримидиновое основание на др. пиримидиновое (гуанин на цитозин, или наоборот). Трансверсии- тип мутаций, заключающихся в замене азотистого основания в молекуле дезоксирибонуклеиновой кислоты (ДНК). При Т. пуриновое основание (аденин, тимин) заменяется пиримидиновым (гуанин, цитозин) или пиримидиновое основание — пуриновым. 31. Физические, химические и биологические мутагены Мутагены - физические, химические и биологические факторы, вызывающие мутации - стойкие наследственные изменения, нарушения в структуре генов, структуре и количестве хромосом. Физические мутагены К физическим мутагенам относятся все виды электромагнитных излучений. При этом, чем меньше длина волны излучения, тем больше количество содержащейся в нём энергии и большая способность проникать внутрь живых клеток. Инфракрасное излучение (тепловое). Обладает незначительной способностью вызывать мутации так же, как высокие и низкие температуры. Ультрафиолетовое излучение. Обладает слабой способностью проникать внутрь клеток, но под его воздействием легко изменяется ДНК, что приводит к структурным нарушениям на молекулярном уровне, способствуя появлению рака кожи. Ионизирующее излучение (гамма- и рентгеновские лучи, протоны, нейтроны и др.). Самый опасный вид излучения, под воздействием его лучей даже электроны сходят с атомных орбит, что приводит к появлению химически активных положительно-заряженных ионов внутри клетки. Воздействие ионизирующего излучения может отрицательно влиять на ДНК и хромосомы, вызывая мутации. Однако, если мутации не произошли непосредственно в половых клетках, то они не наследуются. Риск подвергнуться сильному ионизирующему облучению присутствует в местах выхода на поверхность урановых руд, на высокогорье от космических лучей, в местах ядерных испытаний и выбросов, а также при использовании рентгеновских лучей в медицине. Первые искусственные химические мутации получены у дрожжей под воздействием радиоактивного излучения радия в 1925 году Г. А. Надсеном и Г. С. Филипповым. С помощью рентгеновского излучения Г. Меллером в 1927 г. впервые были получены мутации у дрозофилы. Частота мутаций, возникающих у дрозофилы (и других организмов), прямо пропорциональна дозе облучения. Определенная доза облучения вызывает одинаковое число мутаций как при однократном сильном, так и при нескольких облучениях небольшими дозами. Единицей дозы излучения служит рентген (Р) - количество излучения, которое вызывает образование 2*109 пар ионов/см3 воздуха. На практике пользуются единицей рад , служащей мерой поглощения энергии; в воздухе 1 Р эквивалентен 0,876 рад. Химические мутагены Способность химических веществ вызывать мутации открыта в 1932 В. В. Сахаровым (действием иода на дрозофилы). Систематизация химических мутагенов начата в 1945 году, и с тех пор в список входят различные вещества, число которых возрастает по мере обнаружения мутагенного действия соединений, ранее в этом отношении не изученных. Наиболее сильные химические мутагены, увеличивающие частоту мутаций в сотни раз, называются супермутагенами. К химическим мутагенам относятся: -азотистая кислота; -акридиновые красители; -алкилирующие агенты (например, иприт, диметилсульфат, нитрозометилмочевина, иодацетамид); -аналоги азотистых оснований нуклеиновых кислот (например, 5-бромурацил, 2-аминопурин); -лекарственные препараты (например, цитостатики, препараты ртути, -иммунодепрессанты, некоторые алкалоиды); -некоторые пищевые добавки (например, ароматические углеводороды, цикламаты); -органические растворители; -перекись водорода; -пестициды (например гербициды, фунгициды); -продукты переработки нефти, бензол, биополимеры (чужеродная ДНК, а также, по-видимому, чужеродная РНК); -формальдегид. Биологические мутагены мутагенным фактором ряда вирусов являются, видимо, их нуклеиновые кислоты — ДНК или РНК (вирус кори, краснухи, гриппа); -продукты обмена веществ (продукты окисления липидов); -антигены некоторых микроорганизмов. 32. Механизмы репарации ДНК. Фотореактивация. Болезни, связанные с нарушением процессов репарации. различают 3 возможности предмутационных повреждения ДНК 1) мутаген включается в ДНК вместо нормального азотистого основания 2) мутаген не встраивается в днк, но изменяет азотистое основание, что нарушает репликацию ведет к мутации 3) мутаген может повредить один или несколько азотистых оснований, при этом затруднен процесс репликации и спаивание с другим азотистым основанием большинство таких повреждения исправляются с помощью механизмов репарации. репарация днк восстановление, повреждений днк, препятствующее формированию мутаций. выделяют 3 типа репарации днк: 1. дорепликативная - фотореактивация -тепловая эксцизионная репарация 2. Пострепликативная - происходит за счет процессов рекомбинации. Если повреждение в одной цепи, а в соседней хроматиде участок нормальный, то за счет рекомбинации молекула восстанавливается 3. Индуцированная репарация – зависит у бактерий от функционирования генов recA lexA- SOS-репарация (возникает при массовом повреждении). Фотореактивация – репарация, которая зависит от света. Фотореактивирующее действие видимого света связано с активностью фермента дезоксириботидпиримедин фотолиаза, специфично связывающейся с УФ-облученной ДНК и расщепляющей на мономеры основные УФ-фотопродукты-димеры двух соседних перимединов в одной цепи ДНК, объединенных циклобутановым кольцом. Фермент присоединяется к перимединовым димерам в ДНК в темноте, но реакция расщепления связей, объединяющих 2 молекулы перимедина энергетически зависима от видимого света. Особенно эффективен свет, лежащий в голубой части спектра. Фермент фотолиаза, расщепляющий димеры, обнаружен у E.coli некоторых дрожжей, в лимфоцитах человека. В облученных клетках E.coli фотореактивация удаляет до 90% пиримидиновых жимеров, что повышает выжиываемость клеток и значительно снижает частоту мутаций. Однако есть данные о том, что эффективность удаления предмутационных повреждений в ходе фотореактивации зависит от типа повреждений. Димеры (сцепленные между собой соседние пиримидиновые основания) образуются между ТиТ, ТиЦ, ЦиЦ, ТиУ, ЦиУ, УиУ. 33. Механизмы репарации ДНК. Эксцизионная репарация. Темновая (эксцизионная) репарация – свойство клеток ликвидировать повреждения, ДНК без участия видимого света. При световой репарации исправляются повреждения, возникающие только под воздействием УФ-лучей, при темновой – повреждения, появившиеся под влиянием ионизирующей радиации, химических веществ и других факторов. Темновая репарация обнаруена как у прокариот, так и в клетках эукариот (животных и человека), у которых она изучается в културах тканей. Механизм темновой репарацииДНК отличается тем, что не только разрезаются димеры, но и вырезаются большие участки ДНК. Этапы темновой репарации: 1. Узнавание повреждения ДНК эндонуклеазой. 2. действие эндонуклеазы по разрезанию одной цепи молекулы ДНК вблизи повреждения. 3. Вырезание или эксцизия поврежденного участка и расширение бреши экзонуклеазой. 4. Матричный синтез новой цепи (репаративная репликация) 5. Соединение новообразованного участка с нитью ДНК под воздействием фермента полинуклеотидлигазы. Открытие этого процесса показало, что на молекулярном уровне имеется предмутационный период, во время которого может произойти восстановление исходной нормальной структуры ДНК. Если бы не репарация, то количество мутаций так бы возросло, что препятствовало бы поддержанию гомеостаза и наследственности живых организмов. Нарушение репарации: пигментная ксеродерма – рецессивная аутосомная мутация. Больны дети при рождении выглядят нормально, а чуть позже под влиянием солнечного света появляются веснушки, расширение капилляров, ороговение, поражение глаз. В фибробластах клеток больных процесс репарации после УФ-облучения затягивается до 30 часов (норма – 6 часов) и не достигает уровня нормального репаративного синтеза. Такие нарушения репарации ДНК могут привести к раковым опухолям. 34. Хромосомные болезни, общая характеристика. Моносомии, трисомии, нулисомии, полные и мозаичные формы, механизм нарушения распределения хромосом в первом и втором мейозе. Хромосомная патология может возникать вследствие нарушения расхождения всего набора хромосом в мейозе. Образуются гаметы с нередуцированным числом хромосом, которые имеют не по одному набору хромосом, а по два. При оплодотворении такой яйцеклетки гаметами с гаплоидным или диплоидным набором хромосом образуются полиплоидные зиготы. Полиплоидные организмы обычно имеют грубые пороки развития и погибают в раннем эмбриональном периоде. Возможно нарушение расхождения отдельных хромосом в наборе; образуются гаметы, в которых отсутствует или имеется лишняя хромосома. Поэтому возникающая при оплодотворении зигота характеризуется моно-, три- или тетрасомией. Чаще всего такие расстройства несовместимы с жизнью организма и приводят к спонтанным выкидышам. Нарушения структуры или числа хромосом в половых клетках могут касаться аутосом или половых хромосом. Из всех синдромов, возникающих вследствие нерасхождения аутосом, наиболее распространенной патологией является болезнь Дауна (95 % от числа всех трисомий по аутосомам). При болезни Дауна наблюдается трисомия 21-йхромосомы. Клиническими признаками болезни являются низкий рост, широкое круглое лицо, близко расположенные глаза с узкими глазными щелями, полуоткрытый рот. Для болезни характерны также идиотия и дефекты сердечно-сосудистой системы (пороки сердца и крупных сосудов). При синдроме Эдвардса, характеризующемся трисомией по 18-й хромосоме, имеются множественные физические пороки развития: общая гипотрофия новорожденного, задержка психомоторного развития, крипторхизм, порок сердца, грыжи и многие другие. Синдром Патау, трисомия по 13-й хромосоме, характеризуется микроцефалией, полидактилией, наличием расщелины верхней губы и неба. Частичные трисомии и частичные моносомии выявляются при анализе причин врожденных дефектов развития новорожденных детей. Несбалансированность по генам каждой из хромосом проявляется у новорожденных в виде специфических признаков. Так, например, частичная моносомия короткого плеча 5-й хромосомы дает патологию, описанную как синдром "кошачьего крика" при котором имеются аномалии развития нижней челюсти и гортани, что сопровождается характерным изменением голоса, а также микроцефалия, пороки сердца, четырехпалость и др. При нерасхождении половых хромосом формируется группа синдромов, для которых с клинической точки зрения наиболее характерны интеллектуальное и половое недоразвитие наряду с физическими дефектами. Так, при синдроме Тернера — Шерешевского у пациента женского пола (генотип ОХ) обнаруживаются отставание в развитии (низкий рост), половой инфантилизм, бесплодие, иногда умственная отсталость, пороки сердца и др. У женщины при трисомий X (генотип XXX) имеются умственная отсталость и нарушения физического развития. При синдроме Клайнфелтера (генотип XXY) или сверх Клайнфелтера — (XXXY) наблюдается высокий рост с непропорционально длинными конечностями, гипоплазия яичек, недоразвитие вторичных половых признаков, бесплодие, склонность к асоциальному поведению. Наследование предрасположенности к болезням. Наследственность и реактивность 35. Хромосомные болезни, вызванные структурными перестройками хромосом. кроме изменения количества хромосом у человека, причиной аномалий развития могут быть различные хромосомные болезни. Так при делеции 5-й хромосомы (группы В) наблюдается синдром «кошачьего крика». У таких детей наблюдается нарушение строения гортани вследствие чего они в раннем детстве имеют особый «мяукающий» тембр голоса. Имеются отсталость психомоторного развития и слабоумия. К тяжелым последствиям приводят дилеция 21-й хромосомы. Укороченная 21 хромосома была обнаружена у больных одной из форм хронического белокровия. Потомство клеток, пришедшее от мутантной клетки, несущей дефект, постепенно вытесняет все нормальные лейкоциты, что и вызывает заболевание. 36. Пол как менделирующий признак. Типы определения пола. пол человека представляет собой менделирующий признак, наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с рецессивной гомозиготой, представленной гомогаметным полом (XX). В результате в природе обнаруживается наследственная дифференцировка организмов на мужской и женский пол и устойчивое сокращение во всех поколениях количественного равенства полов. 2.2. Наследование признаков, сцепленных с полом. Морган и его сотрудники заметили, что наследование окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F1, получали равное число красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красноглазые самцы и самки. При скрещивании этих мух F1, между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки. Тот факт, что у самцов частота проявления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х - хромосоме, а Y - хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой самкой из F1. В потомстве были получены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х - хромосома несет ген окраски глаз. В Y - хромосоме соответствующего локуса вообще нет. Это явление известно под названием наследования, сцепленного с полом. Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом. При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме наблюдается полное сцепление с полом. У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери - признак отца получило, название крисс-кросс (или крест-накрест). Известны нарушения цветового зрения, так называемая цветовая слепота. В основе появления этих дефектов зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. было установлено, что цветовая слепота наследуется согласно вполне закономерным правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная картина перекрестного наследования. Все дочери от такого брака получат признак отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери, страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой) Р Ха Ха х Ха y Ха Ха,y F1 Ха Ха, Хаy В том же случае, когда наоборот, отец является дальтоником, а мать имеет нормальное зрение, все дети оказываются нормальными. В отдельных браках, где мать и отец обладают нормальным зрением, половина сыновей может оказаться пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще встречается у мужчин. Э.Вильсон объяснил наследование этого признака, предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным (XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной нормальной женщины (Ха Ха) с мужчиной дальтоником (Хаy) все дети рождаются нормальными. Однако при этом, все дочери становятся скрытыми носителями дальтонизма, что может проявиться в последующих поколениях. Другим примером наследования сцепленного с полом, может послужить рецессивныйполулетальный ген, вызывающий несвертываемость крови на воздухе - гемофилию. Это заболевание появляется почти исключительно только у мальчиков. При гемофилии нарушается образование фактора VIII, ускоряющего свертывание крови. ген, детерминирующий синтех фактора VIII, находится в участке Х-хромосомы, недоминантным нормальным и рецессивным мутантным. Возможны следующие генотипы и фенотипы:
|