Уч пособие ЭМС_2. Е. М. Виноградов
Скачать 3.78 Mb.
|
1. Проблема ЭМС и причины ее появления
Бурное развитие современных систем связи, радиолокации, радионавигации, радиоуправления и т. п. приводит к росту числа радиоэлектронных средств (РЭС) и электромагнитных излучений в окружающем нас пространстве. В результате работа этих средств происходит в условиях непреднамеренных электромагнитных помех, которые средства создают друг другу. Одна из главных задач, которую приходится решать, организуя совместную работу РЭС, состоит в том, чтобы в этих условиях обеспечить требуемое качество функционирования каждого РЭС. Если эта задача решена, то говорят, что обеспечена электромагнитная совместимость (ЭМС) РЭС. Электромагнитная совместимость радиоэлектронных средств – это способность радиоэлектронных средств одновременно функционировать в реальных условиях эксплуатации с требуемым качеством при воздействии на них непреднамеренных помех и не создавать недопустимых радиопомех другим радиоэлектронным средствам. При этом непреднамеренной считают любую радиопомеху, создаваемую источником искусственного происхождения, не предназначенную для нарушения функционирования радиоэлектронных средств. Изначально проблема ЭМС формировалась как проблема обеспечения совместной работы радиоэлектронных средств, в состав которых входили радиопередающие и радиоприемные устройства. Но по мере развития радиотехники и радиоэлектроники стало ясно, что проблема не может быть ограничена только радиоэлектронными средствами указанного вида. Любые устройства, содержащие радиоэлектронные схемы, могут быть как источниками электромагнитных помех для других подобных устройств, так и испытывать мешающее воздействие с их стороны. Появилось такое понятие как техническое средство, и проблема ЭМС стала проблемой ЭМС технических средств. В области ЭМС понятие «техническое средство» имеет свое специфическое определение. Техническое средство (ТС) – это изделие, оборудование, аппаратура или их составные части, функционирование которых основано на законах электротехники, радиотехники и (или) электроники, содержащие электронные компоненты и (или) схемы, которые выполняют одну или несколько следующих функций: усиление, генерирование, преобразование, переключение и запоминание. Техническое средство может быть радиоэлектронным средством (РЭС), средством вычислительной техники (СВТ), средством электронной автоматики (СЭА), электротехническим средством, а также изделием промышленного, научного и медицинского назначения (ПНМ установки). Электромагнитная совместимость технических средств – способность технического средства функционировать с заданным качеством в заданной электромагнитной обстановке и не создавать недопустимых электромагнитных помех другим техническим средствам. Оценка ЭМС базируется на оценке качества работы технического средства. Технические средства разных видов различаются по принципам своей работы и своим рабочим характеристикам, и, следовательно, оценка влияния внешних электромагнитных помех может выполняться по-разному для разных видов ТС. В дальнейшем ограничимся рассмотрением РЭС, в состав которых входят радиопередающие и радиоприемные устройства. Основное внимание будет уделено оценке ЭМС систем телекоммуникации. Условия, в которых работают РЭС, часто называют электромагнитной обстановкой. В общем случае под электромагнитной обстановкой (ЭМО) понимают совокупность электромагнитных явлений, процессов в заданной области пространства, частотном и временном диапазонах. Для телекоммуникационных систем ЭМО определяется как пространственное распределение электромагнитных полей в местах, где размещаются антенны этих систем. Числовой характеристикой ЭМО обычно является значение напряженности электромагнитного поля (выражается в вольтах на метр [В/м]) или плотности потока мощности (ватт на метр квадратный [Вт/м2]). Однако качество работы РЭС, в состав которого входит радиоприемное устройство, зависит не только от электромагнитной обстановки. Оно определяется также помехоустойчивостью и/или помехозащищенностью РЭС. Понятия помехоустойчивости и помехозащищенности распространяются на помехи, которые могут поступать в радиоаппаратуру самыми разными путями (например, через антенну приемника или по цепям питания). Иногда эти понятия рассматривают как синонимы, хотя это не так. Помехоустойчивость РЭС – способность РЭС сохранять заданное качество функционирования при воздействии на него внешних помех с регламентируемыми значениями параметров в отсутствие дополнительных средств защиты от помех, не относящихся к принципу действия или построения РЭС. Помехозащищенность РЭС – способность ослаблять действие электромагнитной помехи за счет дополнительных средств защиты от помех, не относящихся к принципу действия или построения РЭС. Высокая степень помехоустойчивости РЭС не гарантирует автоматического обеспечения ЭМС, но значительно облегчает возможность организации совместной работы. Что касается средств помехозащиты, то по отношению к ним следует проявлять определенную осторожность. Устройство подавления помех обычно ориентировано на подавление помех определенного вида. Если оно применяется в сложной ЭМО, где присутствуют мешающие сигналы, для подавления которых используемое устройство не предназначено, то его применение может не дать ожидаемого эффекта и даже привести к росту помех. Например, при приеме узкополосных сигналов для подавления импульсных помех во входных цепях приемников используют нелинейные устройства (диодные ограничители) с последующей узкополосной фильтрацией. Если наряду с импульсными помехами на входе приемника присутствуют непрерывные мешающие сигналы, то наличие нелинейных элементов может привести к появлению новых мешающих частот, попадающих в полосу пропускания приемника и снижающих качество приема полезного сигнала. Обычно схемы подавления помех такого типа можно отключить и включать только по мере необходимости.
Можно указать несколько факторов, которые приводят к появлению проблемы ЭМС РЭС. 1. Основной причиной, порождающей проблему электромагнитной совместимости радиоэлектронных средств, является ограниченность освоенного радиочастотного спектра при непрерывном росте числа его потребителей. Если рассмотреть, например, диапазон высоких частот (3…30 МГц), то он занимает полосу 27 МГц. При ширине канала 3 кГц (например, при однополосной амплитудной модуляции) в нем можно разместить 9000 каналов. Число желающих пользоваться этим диапазоном (и действительно работающих в нем) неизмеримо больше числа каналов, которые можно в нем выделить, и превышает миллион пользователей. Это означает, что многие РЭС в этом диапазоне частот работают на одинаковых частотах. Такая возможность существует, если между средствами, работающими на одной и той же частоте, уровень помех не приводит к недопустимому снижению качества работы РЭС. Возможность многократного использования радиочастот зависит от условий распространения радиоволн в том или ином диапазоне частот, технических характеристик приемо-передающих и антенных устройств, используемых типов сигналов и видов модуляции и т. д. С большим успехом многократное использование той же самой частоты применяется в сотовой подвижной связи. Однако не всегда разнесение РЭС по расстоянию может быть использовано для обеспечения ЭМС и повышения эффективности использования радиочастотного спектра. Особо остро проблема ЭМС встает при размещении радиосредств различного назначения на ограниченных площадях (морские порты, аэродромы и т. п.) и объектах, как подвижных (корабль, самолет и т. п.), так и стационарных (приемо-передающие центры, мачты для размещения приемных и передающих антенн и т. п.). Радиоэлектронные системы кораблей, особенно военных, несут серьезные потери в своих рабочих характеристиках из-за электромагнитных помех, не учтенных при проектировании корабля и размещении на нем радиооборудования. Проблема ЭМС на боевых кораблях обостряется дополнительно ввиду наложения нескольких факторов, а именно [54]: – более высокая насыщенность радиоэлектронным оборудованием, чем раньше, при меньшей гибкости в его размещении из-за наличия антенных фазированных решеток; – рост мощности передатчиков. Увеличение уровня мощности связных передатчиков приводит к увеличению дальности связи. Однако это единственный положительный фактор такого подхода. Все остальные эффекты, связанные с ростом мощности передатчиков, являются отрицательными; – повышение чувствительности систем к электромагнитным полям, особенно систем, использующих твердотельные приборы; – переход в контурах управления от механических систем к электрическим и электромагнитным с применением твердотельных приборов; – ужесточение норм на уровни излучений, облучающих обслуживающий персонал. Последнее обстоятельство расширяет область опасных излучений и накладывает дальнейшие ограничения на размещение оборудования на верхней палубе и надстройках. Хотя число электронных систем, устанавливаемых на современных боевых кораблях, растет, пространство, пригодное для их размещения, разве что уменьшается. Менее половины имеющихся надстроек могут быть использованы для установки антенн. Из-за необходимости обеспечить свободную траекторию стрельбы для различных систем оружия эти антенны в основном концентрируются в середине корабля на грот и фок-мачтах. Ограниченность пространства для монтажа антенн приводит к тому, что передающая и приемная антенны систем, работающих в диапазоне средних частот (СЧ), и систем, работающих в диапазоне высоких частот (ВЧ), размещаются на расстояниях менее 30 м друг от друга, а для систем сверхвысоких частот (СВЧ) расстояние составляет менее 10 м. При этом расстояние между антеннами систем, работающими в разных диапазонах частот (например, антенной системы связи, работающей в диапазоне ВЧ, и антенной РЛС диапазона СВЧ) часто составляет менее 3 м. Большое количество РЭС и скученность антенн приводят к значительным взаимным помехам между корабельными РЭС. Нет ничего необычного в том, что на входе корабельного радиоприемника могут появиться высокочастотные напряжения, значения которых составляют десятки вольт. Аналогичные трудности возникают и в авиации, о чем можно судить по количеству средств и антенн, размещаемых на самолетах, особенно военных. Так, по сообщениям американской печати [55], на самолете-разведчике W-2V размещается 21 радиостанция при 38 антеннах, для бомбардировщика B-52 эти цифры составляют соответственно 16 и 29, а для истребителя F-4 они равны 8 и 12. Вышки, на которых размещаются антенны телевизионного вещания, ретрансляторов или базовых станций подвижной сотовой связи, широко используются для размещения других систем телекоммуникации, что также требует решения задач обеспечения ЭМС. Ввиду ограниченности частотного ресурса, выделяемого для средств, работающих на объектах, и ограниченных возможностях пространственного разнесения антенн РЭС, решение проблемы обеспечения ЭМС РЭС на объектах является особенно трудным. 2. Наличие у радиоэлектронных средств параметров ЭМС. Параметры, характеризующие радиоэлектронное средство, можно разбить на две группы. К первой группе относятся параметры, определяющие функциональное назначение РЭС, ко второй – параметры ЭМС. Параметрами, определяющими функциональное назначение РЭС, являются параметры, изменение которых влияет на качество передачи и/или приема информации в радиоканале при отсутствии непреднамеренных помех. Эти параметры определяют энергетические потенциалы радиопередающих устройств на выделенных им для работы радиоканалах, а также способность радиоприемных устройств качественно принимать полезный сигнал при отсутствии непреднамеренных помех за пределами отведенного для работы РЭС частотного канала. Параметрами ЭМС являются параметры, значение которых влияет на качество совместной работы совокупности радиоэлектронных средств при наличии непреднамеренных помех за пределами радиоканала, отведенного для работы РЭС. Например, функциональными параметрами радиопередатчика являются мощность излучения передатчика на присвоенной ему частоте, ширина полосы частот основного излучения передатчика и др., а параметрами ЭМС – уровни излучений на гармониках, уровни шумовых излучений и др. Излучения на гармониках или шумовые излучения передатчика находятся за пределами радиоканала, который отведен для работы радиопередатчика. Однако, попадая в основной канал приема РЭС, содержащих радиоприемные устройства, которые работают на соответствующих частотах, эти излучении могут снизить качество приема полезных сигналов. Для радиоприемного устройства (РПУ) параметрами, определяющими качество его работы в соответствии с функциональным назначением, являются чувствительность, избирательность, динамический диапазон по основному каналу приема и др., в то время как параметрами ЭМС выступают такие параметры, как восприимчивость РПУ по побочным каналам приема (ПКП), динамические диапазоны по нелинейным эффектам и др., определяющие качество работы РПУ при наличии непреднамеренных помех от других РЭС, излучения которых лежат за пределами полосы пропускания приемника. Для антенных систем функциональными параметрами являются, например, ширина главного лепестка диаграммы направленности антенны в горизонтальной и вертикальной плоскостях и коэффициент усиления антенны, а параметрами ЭМС – уровни боковых и задних лепестков относительно главного. Параметры ЭМС радиоприемных и радиопередающих устройств нормируют. Нормативные требования к параметрам ЭМС РЭС устанавливают, исходя из технических и конструкторско-технологических возможностей получить желаемые значения параметров, что определяется развитием радиотехники и электроники на момент разработки норм, а также исходя из предполагаемых условий эксплуатации оборудования, для которого нормируются параметры ЭМС. Нормы, с одной стороны, устанавливают требования к параметрам мешающих излучений, а с другой стороны, требования к минимальной помехоустойчивости РЭС в заданных условиях эксплуатации. В связи с этим нормативные требования к параметрам ЭМС для гражданской и военной радиоаппаратуры могут существенно различаться. Выполнение норм, установленных на параметры ЭМС, облегчает решение проблемы обеспечения ЭМС, но не устраняет саму проблему. 3. Влияние окружения на уровни и спектральный состав непреднамеренных помех. Отражения от окружающих объектов увеличивают или уменьшают уровень помехи. Нелинейности окружения изменяют спектральный состав помех. 4. Наличие внешнего фона. Существенный вклад в формирование электромагнитной обстановки вносят излучения со стороны различного рода энергетических и промышленных установок, которые не предназначены для излучения электромагнитной энергии, но в силу специфики своей работы являются источниками непреднамеренных помех. Это так называемые индустриальные помехи. Наличие индустриальных помех часто не позволяет полностью реализовать потенциальные возможности радиоаппаратуры, в частности чувствительность РПУ, и усложняет совместную работу РЭС. Влияние индустриальных помех особенно заметно в крупных промышленных городах, на больших промышленных предприятиях и на подвижных объектах, имеющих крупное энергетическое оборудование и радиоэлектронные системы, таких, как самолеты и корабли. Таким образом предлагаемые решения проблемы ЭМС РЭС в общем случае должны учитывать следующие факторы: ограничения на возможный частотно-территориальный разнос РЭС, наличие у радиоэлектронных средств параметров ЭМС, влияние окружающих объектов на электромагнитную обстановку в месте работы РЭС, наличие индустриальных помех и помех естественного происхождения. Отсутствие ЭМС означает либо некачественную работу РЭС, либо то, что данное РЭС в данной ЭМО работать не может вообще.
Проблемы, создаваемые радиопомехами, могут иметь весьма широкий диапазон – от легкого раздражения пользователя до значительных экономических потерь, а в определенных ситуациях отсутствие ЭМС может привести к человеческим жертвам. Например, определенное раздражение может вызывать восприятие звуковой информации или изображения на телевизионном экране в присутствии помех. Непреднамеренная помеха навигационной системе летательного аппарата может привести к самым печальным последствиям. В литературе можно найти примеры, когда под действием радиопомехи любительского диапазона частот сенсорное устройство привело в действие систему пожаротушения промышленного предприятия, или излучение РЛС от судна доставки, ежедневно в определенное время проплывавшее мимо завода, воздействовало на аналоговые приборы, связанные с системой аварийного отключения завода, вызывая его остановку [54]. В этих случаях следствием были экономические потери предприятий. Важную роль проблема ЭМС играет в военной технике. Катастрофы самолетов военно-морских сил США и НАТО, вызванные непреднамеренными помехами во время военных учений, потери беспилотных целей, пожары в отсеках кораблей и другие подобные происшествия в мирное время, связанные с отсутствием ЭМС, служат подтверждением актуальности этой проблемы [55]. Особенно тяжелые последствия отсутствия ЭМС могут иметь место в военные периоды. В 1967г. во время войны США во Вьетнаме электромагнитная помеха вызвала срабатывание пускового устройства ракеты одного из самолетов, находившихся на верхней палубе американского авианосца «Форрестол». Причина – неправильно смонтированный экранированный разъем и недостаточная помехозащищенность пускового устройства. Источник помехи – излучение РЛС кругового обзора. Поскольку на верхней палубе авианосца находились другие самолеты, груженные бомбами и ракетами и заправленные горючим для боевого вылета, попадание ракеты в один из них привело к катастрофе – взрывам и пожару, который распространился на нижние палубы корабля. Погибли 134 человека, было потеряно 32 самолета, не считая других материальных потерь, связанных с повреждением авианосца [56]. Трагически завершилась судьба английского фрегата «Шеффилд» во время войны между Англией и Аргентиной за Фолклендские острова в начале 80-х годов прошлого века. Отсутствие ЭМС между РЛС кругового обзора и спутниковой системой связи корабля вынуждало командира корабля отключать РЛС кругового обзора во время связи с Лондоном. Атака аргентинских ВВС во время сеанса связи привела к тому, что вовремя не была обнаружена ракета типа воздух-вода, запущенная в сторону фрегата. В результате попадания ракеты в корабль имелись человеческие жертвы, а сам фрегат затонул. В тоже время атакованный одновременно с «Шеффилдом» другой английский фрегат «Плимут» избежал подобной участи. На корабле работала РЛС кругового обзора, что позволило вовремя обнаружить запущенную в его сторону ракету. С корабля было выброшено облако пассивных отражателей, на которое сработала головка самонаведения ракеты, и ракета прошла мимо цели [57]. Подобные примеры можно продолжить, но и приведенных достаточно, чтобы понять важность рассматриваемой проблемы. Отметим особенности изучения проблемы ЭМС РЭС: 1. Рассматриваются только непреднамеренные помехи. Специально организованные помехи являются областью, которой занимается направление, именуемое радиоэлектронной борьбой. 2. Неограниченный уровень помех. Эта особенность проблемы приводит к тому, что приемные устройства, которые для полезного сигнала обычно рассматриваются как линейные, при действии помех могут таковыми уже не быть. И, следовательно, при анализе ЭМС РЭС, в аппаратуре должны рассматриваться возможные нелинейные эффекты. 3. Каждое РЭС рассматривается как возможный источник и рецептор помехи. Эта особенность вытекает из определения ЭМС РЭС, согласно которому каждое РЭС должно работать с требуемым качеством в условиях непреднамеренных помех и не создавать недопустимых помех другим РЭС. 4. Доступность для управления некоторых параметров источников и рецепторов помех. С целью обеспечения ЭМС РЭС на этапе разработки, например, частотно-территориальных планов систем телекоммуникации имеется возможность в некоторых пределах варьировать положение РЭС и их рабочие частоты. В некоторых случаях возможно изменение технических параметров РЭС, например мощности, излучаемой передатчиком. |