Главная страница
Навигация по странице:

  • 31. Особенности строения и передачи возбуждения в нервно-мышечных синапсах.

  • 32. Нейрон как структурно-функциональная единица ЦНС. Классификация нейронов, функциональные структуры нейрона. Интегративная функция нейрона. Нейроглия.

  • 33. Физиологические свойства нервных центров.

  • 34. Основные принципы распространения возбуждения в нервных центрах. Типы нервных сетей. Торможение в сетях.

  • Постсинаптическое.

  • Пресинаптическое торможение

  • Пессимальное торможение

  • 36. Основные принципы координационной деятельности ЦНС: реципрокности, облегчения, окклюзии, обратной связи, общего «конечного» пути, доминанты.

  • Жизнь. ответы к экзамену по физиологии. Экзаменационные вопросыответы по нормальной физиологии для студентов 2 курса педиатрического факультета


    Скачать 368.46 Kb.
    НазваниеЭкзаменационные вопросыответы по нормальной физиологии для студентов 2 курса педиатрического факультета
    АнкорЖизнь
    Дата13.06.2022
    Размер368.46 Kb.
    Формат файлаdocx
    Имя файлаответы к экзамену по физиологии.docx
    ТипЭкзаменационные вопросы
    #587442
    страница4 из 23
    1   2   3   4   5   6   7   8   9   ...   23

    30. Механизм передачи возбуждения в синапсах (электрических и химических). Ионные механизмы постсинаптических потенциалов.

    Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза. (пузырьки подходят к мембране, сливаются с ней и разрываются, выпуская медиатор). Его выделение происходит небольшими порциями - квантами. Каждый квант содержит от 1.000 до 10.000 молекул нейромедиатора. Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку. Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с ее хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников. В частности цАМФ. Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.

    В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы. Открывают хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).

    Тормозными являются глицин- и ГАМКергические синапсы. Активируют калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану. Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны. Она называется тормозным постсинаптическим потенциалом (ТПСП).

    Величина ВПСП и ТПСП определяется количеством квантов медиатора, выделившихся из терминали, а следовательно частотой нервных импульсов. Т.е. синаптическая передача не подчиняется закону "все или ничего". ТПСП не распространяется за пределы субсинаптической мембраны.

    После прекращения поступления нервных импульсов, выделившийся медиатор удаляется из синаптической щели тремя путями:

    • 1.Разрушается специальными ферментами, фиксированными на поверхности субсинаптической мембраны. (АХЭ, МАО,КОМТ).

    • 2.Часть медиатора возвращается в пресинаптическое окончание с помощью процесса обратного захвата (значение в том, что синтез нового нейромедиатора длительный процесс).

    • 3.Небольшое количество уносится межклеточной жидкостью.

    Особенности передачи возбуждения через химические синапсы:

    • 1.Возбуждение передается только в одном направлении, что способствует его точному распространению в ЦНС.

    • 2.Они обладают синаптической задержкой. Это время необходимое на выделения медиатора, его диффузию и процессы в субсинаптической мембране.

    • 3.В синапсах происходит трансформация, т.е. изменение частоты нервных импульсов.

    • 4.Для них характерно явление суммации. Т.е. чем больше частота импульсов, тем выше амплитуда ВПСП и ТПСП.

    • 5.Синапсы обладают низкой лабильностью.

    31. Особенности строения и передачи возбуждения в нервно-мышечных синапсах.

    Нервно-мышечные синапсы образуются окончаниями аксонов двигательных нейронов и мышечными волокнами. Благодаря своеобразной форме они называются нервно-мышечными концевыми пластинками. Их общий план строения такой же, как у всех химических синапсов, но субсинаптическая мембрана толще и образует многочисленные субсинаптические складки. Они увеличивают площадь синаптического контакта. Медиатором этих синапсов является ацетилхолин. В субсинаптическую мембрану встроены Н-холинорецепторы, т.е. холинорецепторы, которые помимо АХ могут связываться и с никотином. Взаимодействие ацетилхолина с холинорецепторами приводит к открыванию хемозависимых натриевых каналов и развитию деполяризации. В связи с тем, что отдельные кванты ацетилхолина выделяется и в состоянии покоя, в постсинаптической мембране нервно-мышечных синапсов постоянно возникают слабые кратковременные всплески деполяризации - миниатюрные потенциалы концевой пластинки (МПКП). При поступлении нервного импульса, выделяется большое количество АХ и развивается выраженная деполяризация, называемая потенциалом концевой пластинки (ПКП). В отличие от центральных, в нервно-мышечных синапсах ПКП всегда значительно выше критического уровня деполяризации. Поэтому он всегда сопровождается генерацией ПД и сокращением мышечного волокна. Т.е. для распространяющегося возбуждения и сокращения суммации эффектов квантов нейромедиатора не требуется. Яд кураре и курареподобные препараты фармакологические препараты резко снижают ПКП и блокируют нервно-мышечную передачу. В результате выключается вся скелетная мускулатура, в том числе и дыхательная. Это используется для операций с искусственной вентиляцией легких. Разрушение АХ осуществляется ферментом ацетилхолинестеразой. Некоторые фосфороорганические вещества (хлорофос, зарин) инактивируют холинэстеразу. Поэтому АХ накапливается в синапсах и возникают мышечные судороги.

    32. Нейрон как структурно-функциональная единица ЦНС. Классификация нейронов, функциональные структуры нейрона. Интегративная функция нейрона. Нейроглия.

    Центральная нервная система (ЦНС) - это комплекс различных образований спинного и головного мозга, которые обеспечивают восприятие, переработку, хранение и воспроизведение информации, а также формирование адекватных реакций организма на изменения внешней и внутренней среды.

    Структурным и функциональным элементом ЦНС являются нейроны. Это высокоспециализированные клетки организма, чрезвычайно различающиеся по своему строению и функциям. В общем плане, все нейроны имеют тело - сому и отростки - дендриты и аксоны. Их условно разделяют по структуре и функциям на следующие группы:

    1. По форме тела:

    • а. Многоугольные

    • б. Пирамидные

    • в. Круглые

    • г. Овальные

    2. По количеству и характеру отростков:

    • а. Униполярные - имеющие один отросток

    • б. Псевдоуниполярные - от тела отходит один отросток, который затем делится на 2 ветви.

    • в. Биполярные - 2 отростка, один дендритоподобный, другой аксон.

    • г. Мультиполярные - имеют 1 аксон и много дендритов.

    3. По медиатору, выделяемому нейроном в синапсе:

    • а. Холинергические

    • б. Адренергические

    • в. Серотонинергические

    • г. Пептидергические и т.д.

    4. По функциям:

    • а. Афферентные или чувствительные. Служат для восприятия сигналов из внешней и внутренней среды и передачи их в ЦНС.

    • б. Вставочные или интернейроны, промежуточные. Обеспечивают переработку, хранение и передачу информации к эфферентным нейронам. Их в ЦНС большинство.

    • в. Эфферентные или двигательные. Формируют управляющие сигналы, и передают их к периферическим нейронам и исполнительным органам.

    5. По физиологической роли:

    • а. Возбуждающие

    • б. Тормозные

    Сома нейронов покрыта многослойной мембраной, обеспечивающей проведение ПД к начальному сегменту аксона - аксонному холмику. В соме расположено ядро, аппарат Гольджи, митохондрии, рибосомы. В рибосомах синтезируют тигроид, содержащий РНК и необходимый для синтеза белков. Особую роль играют микротрубочки и тонкие нити - нейрофиламенты. На дендритах имеются выступы для синапсов - шипики, через которые в нейрон поступает информация. По аксонам сигнал идет к другим нейронам или исполнительным органам.

    Таким образом, общими функциями нейронов ЦНС являются прием, кодирование, хранение информации и выработка нейромедиатора и интегративная функция.

    Кроме нейронов в ЦНС имеются клетки нейроглии. Размеры глиальных клеток меньше чем нейронов. В зависимости от размеров и количества отростков выделяют астроциты, олигодендроциты, микроглиоциты. Нейроны и глиальные клетки разделены узкой (20 нМ) межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами. Таким образом глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада.

    33. Физиологические свойства нервных центров.

    Нервным центром (НЦ) называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма. Например, бульбарный дыхательный центр.

    Для проведения возбуждения через нервные центры характерны следующие особенности:

    • Одностороннее проведение. Оно идет от афферентного, через вставочный к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

    • Центральная задержка проведение возбуждения. Т.е. по НЦ возбуждение идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой.

    • Пространственная и временная суммация. Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда ВПСП. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторов нейронов.

    • Трансформация ритма возбуждения - изменение частоты нервных импульсов при прохождении через нервный центр. Частота может понижаться или повышаться. Понижающая трансформация объясняется суммацией нескольких ВПСП и возникновением одного ПД в нейроне.

    • Посттетаническая потенциация, это усиление рефлекторной реакции в результате длительного возбуждения нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы,. выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

    • Последействие, это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

    • Тонус нервных центров - состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к НЦ нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов.

    • Автоматия или спонтанная активность нервных центров. Периодическая или постоянная генерация нейронами нервных импульсов, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

    • Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности Н.Ц. лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

    • Низкая физиологическая лабильность и быстрая утомляемость. Н.Ц. могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов.

    34. Основные принципы распространения возбуждения в нервных центрах. Типы нервных сетей. Торможение в сетях.

    Простейшим нервным центром является нервная цепь, состоящая из трех последовательно соединенных нейронов (рис). Нейроны сложных нервных центров имеют многочисленные связи между собой, образуя нервные сети трех типов:

    1. Иерархические. Если возбуждение распространяется на все большее количество нейронов, то такое явление называется дивергенцией (рис). Если же наоборот, от нескольких нейронов пути идут к меньшему количеству, такой механизм называется конвергенцией (рис). В таких сетях вышележащие нейроны управляют нижележащими.

    2. Локальные сети. Содержат нейроны с короткими аксонами. Они обеспечивают связь нейронов одного уровня ЦНС и кратковременное сохранение информации на этом уровне. По таким цепям возбуждение циркулирует определенное время. Такая циркуляция называется реверберацией возбуждения (мех. кратковременной памяти).

    3. Дивергентные сети с одним входом. В них один нейрон, т.е. вход образует большое количество связей с нейронами многих центров.

    В нервных сетях большое количество вставочных нейронов, ряд из которых является тормозными. Поэтому в них может возникать несколько типов тормозных процессов:

    1. Реципрокное торможение. В этом случае, сигналы идущие от афферентных нейронов, возбуждают одни нейроны, но одновременно, через вставочные тормозные нейроны, тормозят другие. Такое торможение называется также сопряженным (рис) .

    2. Возвратное торможение. Возбуждение идет от нейрона по аксону к другой клетке. Но одновременно по коллатералям (ветвям) к тормозному нейрону, который образует синапс на теле этого же нейрона.

    3. Латеральное торможение. Это процесс, при котором возбуждение одной нейронной цепи приводит к торможению параллельной с такими же функциями. Осуществляется через вставочные нейроны.

    35. Торможение в ЦНС (И.М. Сеченов, Ф. Гольц, Мегун). Современные представления об основных видах центрального торможения - постсинаптического, пресинаптического, пессимального и их механизмах

    Явление центрального торможения обнаружено И.М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. Затем на таламус, т.е. зрительные бугры накладывал кристаллик поваренной соли и обнаружил, что время рефлекса значительно увеличивалось. Это свидетельствовало о торможении рефлекса. Сеченов сделал вывод, что вышележащие Н.Ц. при своем возбуждении тормозят нижележащие. Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение.

    Первоначально была предложена унитарно-химическая теория торможения. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр.

    В ЦНС выделяют следующие механизмы торможения:

      • Постсинаптическое. Оно возникает в постсинаптической мембране сомы и дендритов нейронов. Т.е. после передающего синапса. На этих участках образуют аксо-дендритные или аксо-соматические синапсы специализированные тормозные нейроны (рис). Эти синапсы являются глицинергическими. В результате воздействия ГЛИ на глициновые хеморецепторы постсинаптической мембраны, открываются ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается ТПСП. Роль ионов хлора в развитии ТПСП небольшая. В результате возникающей гиперполяризации возбудимость нейрона падает. Проведение нервных импульсов через него прекращается.

      • Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящем к передающему синапсу. Т.е. такой синапс является аксо-аксональным (рис). Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходить из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны. Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а следовательно выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект.

      • Пессимальное торможение. Обнаружено Н.Е. Введенским. Возникает при очень высокой частоте нервных импульсов. Развивается стойкая длительная деполяризация всей мембраны нейрона и инактивация ее натриевых каналов. Нейрон становится невозбудимым.

    В нейроне одновременно могут возникать и тормозные и возбуждающие постсинаптические потенциалы. За счет этого и происходит выделение нужных сигналов.

    36. Основные принципы координационной деятельности ЦНС: реципрокности, облегчения, окклюзии, обратной связи, общего «конечного» пути, доминанты.

    Рефлекторная реакция осуществляется целой группой рефлекторных дуг и нервных центров. Координация рефлекторной деятельности обеспечивает согласованную деятельность органов и систем организма. Она осуществляется с помощью следующих процессов:

    • Временное и пространственное облегчение. Это усиление рефлекторной реакции при действии ряда последовательных раздражителей или одновременном их воздействии на несколько рецептивных полей. Объясняется явлением суммации в нервных центрах.

    • Окклюзия явление противоположное облегчению. Когда рефлекторная реакция на два или более сверхпороговых раздражителя меньше, чем ответы на их раздельное воздействие. Оно связано с конвергенцией нескольких возбуждающих импульсов на одном нейроне.

    • Принцип общего конечного пути. Разработан Ч. Шеррингтоном. В основе его лежит явление конвергенции. Согласно этому принципу на одном эфферентном мотонейроне могут образовывать синапсы нескольких афферентных, входящих в несколько рефлекторных дуг. Этот нейрон называется общим конечным путем и участвует в нескольких рефлекторных реакциях. Если взаимодействие этих рефлексов приводит к усилению общей рефлекторной реакции, такие рефлексы называются союзными. Если же между афферентными сигналами происходит борьба за мотонейрон - конечный путь, то антагонистическими.

    • Реципрокное торможение. Обнаружено Ч. Шеррингтоном. Это явлениеторможения одного центра в результате возбуждения другого. Т.е. в этом случае тормозится антагонистический центр. В реципрокных взаимоотношениях находятся центры вдоха и выдоха продолговатого мозга, центры сна и бодрствования и т.д.

    • Принцип доминанты. Открыт А.А. Ухтомским. Доминанта - это преобладающий очаг возбуждения в ЦНС, подчиняющий себе другие НЦ. Доминантный центр обеспечивает комплекс рефлексов, которые необходимы в данный момент для достижения определенной цели. При некоторых условиях возникают питьевая, пищевая, оборонительная, половая и др. доминанты. Свойствами доминантного очага являются повышенная возбудимость, стойкость возбуждения, высокая способность к суммации, инертность.

    • Принцип обратной афферентации. Результаты рефлекторного акта воспринимаются нейронами обратной афферентации и информация от них поступает обратно в нервный центр. Там они сравниваются с параметрами возбуждения и рефлекторная реакция корректируется.
    1   2   3   4   5   6   7   8   9   ...   23


    написать администратору сайта