Федеральное агентство по образованию Государственное образовательное учреждение
Скачать 2.29 Mb.
|
Вариант 29 Вершиной треугольника служит точка M1(5; -3), а основанием – отрезок, соединяющий точки M2(0; -1) и M3(3; 3). Составить уравнение сторон треугольника и найти длину высоты треугольника. Найти угол наклона к оси ох и начальную ординату прямой . Стороны треугольника заданы уравнениями (АВ), (ВС), (АС). Найти углы, которые медиана ВМ образует со сторонами АВ и ВС. Написать уравнение прямой, параллельной прямым и и проходящей посередине между ними. Через точку пересечения плоскостей , , провести плоскость, параллельную плоскости . Полученное уравнение привести к уравнению в отрезках и построить. Через точку Q(-1; 3; -8) проведены две плоскости, одна из них содержит ось Oy, другая Oz. Вычислить угол между этими плоскостями. Плоскость проходит через точки M1(0; 1; 2), M2(2; 8; 3), M3(3; -2; -1). Найти расстояние точки Р(5; -8; 6). Написать каноническое уравнения прямой . Доказать, что прямые и параллельны и найти расстояние между ними. Прямая α проходит через точку А(1; -3; 6) параллельно оси Oy. Прямая β проходит через точку В(2; 1; -1) параллельно прямой . Найти угол между прямыми. Прямая проходит через точки M1(-1; 3; 0), M2(1; 7; 3). Плоскость задана уравнением . При каких B и D прямая лежит в плоскости? |