Главная страница

Физика ядерной медицины


Скачать 9.62 Mb.
НазваниеФизика ядерной медицины
АнкорPart 1.docx
Дата28.01.2017
Размер9.62 Mb.
Формат файлаdocx
Имя файлаPart 1.docx
ТипДокументы
#616
страница15 из 40
1   ...   11   12   13   14   15   16   17   18   ...   40

Глава 3. Гамма-камера

  1. Краткая история


Сцинтилляционная камера (или гамма-камера) была создана как позиционно-чувствительный детектор Ангером в 1958 году. В середине 60-х годов прошлого века она стала одним из основных клинических инструментов для радионуклидной диагностики. До появления гамма-камеры серийным прибором для визуализации распределения гамма-излучающего РФП в теле пациента являлся линейный сканер. В этом приборе специальное механическое устройство перемещает детектор излучения вдоль тела пациента, производя, таким образом, сканирование ионизирующего излучения, выходящего из пациента. Результатом измерения является визуализация распределения РФП вдоль выбранного в данном измерении направления сканирования. Для анализа излучения, выходящего из ограниченной области пациента, сканеры комплектуются дополнительными коллиматорами. Принцип работы такого сканера заключается в последовательном просмотре исследуемого объекта с помощью регистрации излучения, выходящего в узком интервале телесного угла, вырезаемого коллиматором. Для повышения светосилы прибора коллимационное устройство выполняется в виде многоканальной системы фокусирующих коллиматоров, оси которых пересекаются в одной точке – фокусе (рис. 3.1).

Фактически линейные сканеры являются фокально-плос-костными устройствами, т.е. позволяют получать наилучшее качество изображение распределения РФП в фокусной плоскости коллимационной системы. В то время как распределения активности выше и ниже фокусной плоскости накладываются друг на друга и размываются. При правильном выборе параметров линейные сканеры визуализируют с хорошим качеством статические распределения р/н. Однако так как для сканирования отдельного органа требуется несколько минут, то этот прибор мало пригоден для изучения быстрых динамических процессов.
рис.3_1.jpg

Рис.3.1. Многоканальный фокусирующий коллиматор сканера с коническими

сходящимися каналами
В гамма-камере Ангера используется стационарный позиционно-чувствительный детектор в виде кристалла йодистого натрия большого диаметра, перекрывающего ширину пациента. Главное преимущество гамма-камеры по сравнению со сканером заключается в быстродействии, обусловленным получением информации о распределении РФП одновременно по всему обозреваемому полю. Позднее конструкция гамма-камер неоднократно усовершенствовалась, стала применяться цифровая обработка сигналов. Однако принципиальные особенности конструкции Ангера сохранились и в современных камерах. В последнее время в гамма-камерах в качестве позиционно-чувствительных детекторов начинают применять матрицы из полупроводниковых детекторов, сочлененных с фотодиодами. Многие эксперты считают такие камеры наиболее перспективными.

Подробные описания конструкции линейных сканеров и современных гамма-камер, а также принципов их работы и алгоритмов восстановления изображений можно найти в отечественных работах [1 – 3].
  1. Принцип работы гамма-камеры Ангера


В сцинтилляционной камере Ангера используется широкий, но тонкий (примерно 6 – 10 мм) кристалл NaI(Tl) круглой с диаметром 250 – 400 мм или прямоугольной формы с линейными размерами примерно 400х500 мм. Кристалл находится в оптическом контакте со световодом и системой ФЭУ (рис. 3.2).

рис3_2.jpg
Рис. 3.2. Поперечный разрез блока детектирования гамма-камеры Ангера: 1 – исследуемый объект; 2 – коллиматор; 3 – сцинтиллятор; 4 – выходное окно сцинтиллятора; 5 – световод; 6фотоэлектронные умножители; 7 – цепи передачи импульсов; 8 – светозащитный кожух (адаптировано из [2])
Типовая гамма-камера обычно включает следующие компоненты: детектор, коллиматор, система (сборку) фотоумножителей, предусилитель, усилитель, цепь X-, Y- позиционирования, электронно-лучевую трубку или другое устройство для визуализации и регистрации жидкокристаллический дисплей (рис. 3.3).

Выходные импульсы от каждого ФЭУ взвешиваются резистером (или фиксированной емкостью в ранних конструкциях) в соответствии с его позицией сборке. Далее для определения X и Y координаты взаимодействия фотона в кристалле рассчитывается нормализованная сумма всех позиционно-взвешенных сигналов. Расчет проводится следующим образом:

(3.1)

где xi , yi – координаты i-фотоумножителя с выходным сигналом ρi;

Z –поглощенная в кристалле энергия фотона, определенная суммированием невзвешенных выходных сигналов от всех фотоумножителей. Величина Z служит также нормализационным фактором.
рис3_4.jpg
Рис. 3.3. Схематическая электронная диаграмма гамма-камеры
Стандартная геометрия измерения излучения выходящего из пациента показана на рис. 3.4.

Схема определения взвешивающего фактора для камеры Ангера с семью ФЭУ и принцип определения X и Y позиционных импульсов, возникающих при взаимодействии γ-квантов в кристалле, иллюстрируется на рис. 3.5. Все выходы ФЭУ связываются через емкости с четырьмя выходными проводниками, создавая четыре зависящих от направления сигнала: (см. рис. 3.5). Величина емкости прямо пропорциональна локализации конкретного ФЭУ относительно узлов формирования этих четырех сигналов.
рис3_4.jpg

Рис. 3.4. Типовая геометрия измерения распределения РФП в пациенте
Предположим, что γ-квант провзаимодействовал в позиции (*) около ФЭУ 6. Наибольшее количество света в этом случае получит фотокатод ФЭУ 6, количество же света упавших на фотокатоды других ФЭУ будет обратно пропорционально их расстоянию до точки взаимодействия. Из четырех зависящих от направления сигналов будет больше чем и будет больше, чем так как взаимодействие произошло в левом квадранте. Привязку сигнала к X-, Y-координатам можно провести по следующим формулам:

(3.2)

(3.3)

(3.4)

где k – константа; k/Z – коэффициент усиления.

Схема на рис. 3.5 показывает также процесс отображения на экране ЭЛТ (или ином дисплее) точек взаимодействия фотонов в кристалле. Позиционные X и Y сигналы поступают на вертикальную и горизонтальную отклоняющие пластины ЭЛТ. Одновременно Z сигнал анализируется амплитудным анализатором, и если его амплитуда находится в пределах заданного окна, то электронный пучок ЭЛТ отпирается. В результате пучок ударяет в точку, определяемую координатами X и Y. Сигналы открытия входа регистрируются счетчиком для подсчета полного количества импульсов в изображении.
рис3_5.jpg
Рис. 3.5. Электронная схема получения взвешивающего фактора для гамма-камеры с семью ФЭУ. Локализация точки взаимодействия γ-кванта достигается суммированием взвешенных выходных сигналов от ФЭУ по четырем направлениям. Позиционные сигналы, представляющие X- и Y-координаты точки взаимодействия, подаются на отклоняющие пластины электронно-лучевой трубки (ЭЛТ). Z-сигнал производит открытие входа, если амплитуда импульса находится в заданном окне (адаптировано из [4])
Большинство современных камер имеет несколько окон в амплитудном анализаторе и возможность получать отображение распределения на дисплее для каждого окна. Это позволяет анализировать распределения нескольких р/н. В современных гамма-камерах применяется, кроме того, оцифровывание сигналов и компьютерная обработка изображений и др. усовершенствования.

рис3_5а.jpg
Рис.3.6. Исследование пациента на современной гамма-камера с двумя

детекторами
  1. 1   ...   11   12   13   14   15   16   17   18   ...   40


написать администратору сайта