ФИЗИОЛОГИЯ АНАЛИЗАТОРОВ. Физиология анализаторов
Скачать 242 Kb.
|
Механизм передачи звуковых колебанийЗвуковые колебания, воздействуя на систему слуховых косточек среднего уха, приводят к колебательным движениям мембраны овального окна, которая, прогибаясь, вызывает волнообразные перемещения перилимфы в вестибулярной и через геликотрему — в барабанной лестницах. Колебания перилимфы доходят до круглого окна и приводят к смещению его мембраны по направлению к среднему уху. Движения перилимфы верхней и нижней лестниц (каналов) передаются на вестибулярную мембрану, а затем на полость среднего канала, приводя в движение эндолимфу и базилярную мембрану (рис. 33). Рис. 33. Схема распространения звуковых колебаний в улитке: 1 — овальное окно; 2 — вестибулярная лестница; 3 — геликотрема; 4 — средняя лестница; 5 — тимпаническая лестница; 6 — круглое окно Если на ухо действуют низкочастотные звуки (до 1000 Гц), то, по мнению Г. Бекеши, происходит смещение базилярной мембраны на всем ее протяжении, от основания до верхушки улитки, так как собственная частота колебаний перилимфы верхнего и нижнего каналов настолько мала, что совпадает с низкой частотой звукового стимула. При действии высокочастотных колебаний происходит перемещение укороченного по длине колеблющегося столба жидкости ближе к овальному окну и наиболее жесткому и упругому участку базилярной мембраны. Вследствие смещений последней волоски рецептивных клеток контактируют с текториальной мембраной. При этом реснички волосковых клеток деформируются. В результате энергия звуковых колебаний трансформируется в электрический разряд (нервный импульс) волосковых клеток. Помимо воздушной проводимости существует и костная (костями черепа). Ощущение звука возникает и тогда, когда вибрирующий предмет, например камертон, прикладывают к сосцевидному отростку височной кости, тогда звуковые колебания распространяются непосредственно через череп. Определение костной проводимости звука позволяет выявить патологию внутреннего уха. Проводящие пути и центры слухового анализатораНервный импульс возникает в волосковых клетках, передается биполярным нервным клеткам, расположенным в спиральном ганглии улитки (первый нейрон). Центральные отростки клеток спирального ганглия образуют слуховой, или кохлеарный, нерв (VIII пара черепно-мозговых нервов). Кохлеарный нерв проходит в продолговатый мозг и заканчивается на клетках кохлеарных ядер (второй нейрон). Нервные волокна от кохлеарных ядер в составе боковой петли доходят до верхней оливы (третий нейрон). Одна часть волокон латеральной петли достигает среднего мозга — ядер нижних бугров четверохолмия, другая — медиального коленчатого тела зрительных бугров, где происходит переключение и находится четвертый нейрон. Далее волокна в составе слуховой радиации заканчиваются в коре верхней части височной доли большого мозга (поля 41 и 42 по Бродману), т.е. в центральной части слухового анализатора. Функция отдельных частей проводящей системы слухового анализатора состоит в следующем. В спиральном ганглии методом разрушения и перерезок было показано пространственно раздельное представительство низких и высоких частот. Так, частичная перерезка волокон слухового нерва приводит к потере слуха на высоких частотах. При полной перерезке слухового нерва происходит потеря слуха на низких частотах. Нижние бугры четверохолмия отвечают за ориентировочный рефлекс (поворот головы в сторону источника звука). Слуховая кора принимает участие в переработке звуковой информации в процессе дифференцировки звуков, она отвечает за бинауральный слух. Электрические явления в улитке При отведении электрических потенциалов от разных частей улитки различают пять электрических феноменов: 1. Мембранный потенциал волосковых клеток, равный —80 мв. Регистрируется при введении в нее микроэлектрода. 2. Эндокохлеарный потенциал — регистрируется при прохождении микроэлектрода через каналы улитки. Эндолимфа, содержащая много ионов калия, имеет положительный заряд по отношению к перилимфе верхнего и нижнего каналов, он равен +80 мв. Эндокохлеарный потенциал создается за счет функционирования сосудистой полоски и обусловлен определенным уровнем окислительно-восстановительных реакций. Он является источником энергии для процесса преобразования воздействующего раздражителя в нервный импульс. Разрушение сосудистой полоски и гипоксия приводят к исчезновению эндокохлеарного потенциала. 3. Микрофонный потенциал, или эффект, возникает в улитке при действии звука, является физическим явлением и полностью отражает форму звуковых волн. Он регистрируется при помещении электродов в барабанной лестнице вблизи от кортиева органа или на круглом окне. Этот потенциал аналогичен выходному напряжению микрофона, и если его подать на усилитель и пропустить через громкоговоритель, то получим воспроизведение речи. Происхождение микрофонного эффекта не совсем ясно, его связывают с механохимическими преобразованиями в волосковых клетках кортиева органа, повреждение которого приводит к исчезновению микрофонного эффекта. 4. Суммационный потенциал: при действии звуков большой силы и частоты происходит стойкое изменение нулевой линии на записи электрических колебаний или сдвиг исходной разности потенциалов — это суммационный потенциал, который, в отличие от микрофонного, воспроизводит не форму звуковой волны, а ее огибающую. 5. Потенциалы действия слухового нерва регистрируются при отведении от волокон слухового нерва. Их частота зависит от высоты действующего на ухо тона, но до определенных пределов. Если частота звуковых колебаний не превышает 1000 в секунду, то в слуховом нерве возникают импульсы такой же частоты. При действии на ухо высокочастотных колебаний частота импульсов в слуховом нерве ниже, чем частота звуковых колебаний. Потенциал действия слухового нерва является результатом синаптической передачи возбуждения в нервных элементах кортиева органа с участием медиатора (возможно, глутамата). Механизм восприятия звуков различной частоты Существуют две теории восприятия звуков. Согласно резонансной теории слуха Г.Д.Гельмгольца (1885 г.), базилярная мембрана состоит из отдельных волокон (струн резонатора), настроенных на звуки определенной частоты. Так, звуки высокой частоты воспринимаются короткими волокнами базилярной мембраны, расположенными ближе к основанию улитки, низкой частоты — длинными волокнами вершины улитки. Теория места основана на различной способности волосковых клеток, расположенных в разных местах базилярной мембраны, воспринимать звуки различной частоты. Повреждение отдельных участков базилярной мембраны с волосковыми клетками приводит к повышению порога восприятия звуков определенной частоты. |