Физиология это наука о жизнедеятельности человеческого организма, о деятельности его отдельных органов и систем органов. Физиология для медицины
Скачать 0.56 Mb.
|
Первая - гипоталамус - передняя доля гипофиза (усиление секреции АКТГ) - кора надпочечников (усиление секреции альдостерона) и как следствие: 1) усиление реабсорбции натрия, а следом и 2) усиление реабсорбции воды в почках. 3) ускорение всасывания воды в ЖКТ; 4) формирование чувства жажды; 5) увеличение потребления воды. Вторая - гипоталамус - задняя доля гипофиза (усиливается выработка вазопрессина (антидиуретического гормона)), увеличивается выделение вазопрессина задней долей гипофиза и, как следствие, усиление реабсорбции воды в почках. И первое, и второе воздействия ведут к задержке воды в организме, к усилению ее потребления, а значит в конечном итоге к восстановлению объема циркулирующей крови. Дополнительные механизмы. 1. Дополнительно снижение кровотока через почки активирует выброс ренина, который стимулируется образованием ангиотензина II, что, с одной стороны, еще более стимулирует выброс альдостерона корой надпочечников, задерживает воду в организме, с другой - вызывает констрикцию мелких сосудов. Это является одним из факторов обеспечения соответствия объему циркулирующей крови и сосудов. 2. Снижение объема циркулирующей крови приводит к падению АД, и это включает механизмы гомео-статирования АД (учащение сердцебиений, сокращение сосудов и т.д.), которые направлены на то, чтобы привести в соответствие объем циркулирующей крови и объем кровеносного русла. Регуляция ОЦК через осморецепторы. В связи с тем, что объем циркулирующей крови зависит от распределения воды между сосудами и интерстициальным пространством, изменение объема приводит к изменению осмотического давления. Важную роль в поддержании объема циркулирующей крови играет механизм, обеспечивающий постоянство осмотического давления. Увеличение (гиперосмолярность) или снижение (ги-поосмолярность) осмотического давления воспринимается осморецепторами гипоталамуса. Нейроны супраоптического и паравентрикулярного ядер гипоталамуса обладают высокой осмочувствительностью (В этой зоне гематоэнцефа-лический барьер отсутствует). Гиперосмолярность, возникающая при потере жидкости (уменьшении объема циркулирующей крови) стимулирует выработку вазопрессина (антидеуретического гормона), он действует на V2-рецепторы в почках и 1) изолированно усиливает реабсорбцию воды, 2) задерживает воду в организме, 3) формирует чувство жажды и тем самым способствует 4) нормализации объема циркулирующей крови. Гипоосмолярность, возникающая при избытке жидкости в организме, вызывает торможение выделения вазопрессина (антидиуретического гормона) и, как следствие, обильное мочеотделение. При резком быстром снижении АД и уменьшении объема циркулирующей крови происходит: 1. Быстрое перераспределение жидкости между тканями и кровью (жидкость идет на уровне капилляров в кровеносное русло). 2. Компенсаторно усиливается венозный возврат крови к сердцу, для того чтобы сохранить хотя бы на минимальном уровне ударный объем, а также количество крови, находящейся в артериальной системе. 3. Происходит пополнение циркулирующей фракции крови за счет мобилизации крови из депо крови. 4. Усиливается сброс крови через сосудистые шунты. 5. Компенсаторно увеличивается ОПС, что позволяет удержать АД на минимально необходимом уровне. 6. Минимизируется кровоток через органы. 7. Происходит централизация кровообращения. 62.Регуляция работы сердца. Саморегуляция сердечной деятельности. Закон саморегуляции. Нервная регуляция деятельности сердца. Гуморальная регуляция деятельности сердца. Кардиальные рефлексы. Регуляция работы сердца – это изменение его деятельности в соответствии с потребностями организма. Результатом изменения работы сердца является МОК. МОК = ЧСС • СВ. Регулирующие механизмы могут обеспечить изменение МОК через каждую из этих величин. Классификация механизмов, регулирующих деятельность сердца. Различают клеточный, интраорганный и экстракардиальный уровень регуляции. Регулирующие влияния распространяются на все физиологические свойства: возбудимость, проводимость, сократимость и автоматию. 1) Изменение автоматии отражается в изменение частоты – хронотропный эффект. 2) Изменение сократимости в силе сокращения – инотропный эффект. 3) Изменение возбудимости – батмотропный. 4) Изменение проводимости – дромотропный. Закон саморегуляции Одна из закономерностей саморегуляции сердца была открыта Анрелом . Она выражается в том, что при увеличении сопротивления выбросу крови из желудочков сила их сокращения возрастает. Такое увеличение сопротивления происходит при сужении аорты или нагрузке давлением. Нагрузкой давлением называют ситуацию, при которой желудочки выбрасывают кровь против повышенного давления в артериях. В этих условиях резко возрастает работа и энергетические потребности желудочков. Еще одна закономерность саморегуляции сердца отражена в феномене Боудича, называемом также феноменом лестницы или закономерностью гомойометрической саморегуляции. Феномен Боудича проявляется в том, что при увеличении частоты сердечных сокращений сила сокращений возрастает. Это увеличение вызвано возрастанием содержания ионов Са2+ в саркоплазме миокардиальных волокон. При частых возбуждениях ионы Са2+ не успевают удаляться из саркоплазмы и создаются условия для более интенсивного взаимодействия актиновых и миозиновых нитей. Нервная регуляция деятельности сердца. Уменьшение или увеличение просвета кровеносных сосудов осуществляется рефлекторно - под действием вегетативной нервной системы. В стенках сосудов и сердца находятся рецепторы, которые воспринимают изменение давления в сердце и сосудах. К гладкой мускулатуре стенок сосудов подходит 2 вида сосудов нервов: сосудорасширяющие и сосудосужающие. Регулирует деятельность сердечно-сосудистой системы, в том числе и частоту сокращения сердца - продолговатый мозг (отдел заднего мозга). В нём находится сосудодвигательный центр. Из него -- по блуждающему нерву, содержащему парасимпатические волокна -- тормозящие-уменьшающие частоту сердечного сокращения. В организме в зависимости от изменения внешних и внутренних факторов должна меняться частота сердечных сокращений. Эти изменения и работа сердца в целом регулируются с помощью двух механизмов: нервного и гуморального. С помощью этой регулировки осуществляется гомеостаз. Нервная регуляция осуществляется вегетативная нервная системой: – парасимпатическую; - симпатическую. 1) Парасимпатическая - в состав блуждающего нерва проходят волокна нервной системы- тормозят, замедляют частоту сердечного сокращения. 2) Симпатическая - в спинном мозге - в шейном и грудном отделах -- ускоряют частоту сердечного сокращения. На работу сердца влияет импульсы, поступающие от сосудов - в сосудах - рецепторы от которых идёт возбуждение к ЦНС -- изменение парасимпатических и симпатических воздействий -- норма давления в сосудах. Изменение сердечной деятельности - при боли; сильных эмоциях. Обычно - сердцебиение при сильных эмоциях учащается. Это показывает на роль коры больших полушарий. Гуморальная регуляция - осуществляется рядом веществ, поступающих в кровь из желёз внутрь сердца и других органов и тканей. К ним принадлежит гормон адреналин - он поступает из надпочечников - и действует как симпатическая нервная система ==> увеличивает частоту сердечных сокращений. Гормон щитовидной железы - тироксин - увеличивает частоту сердечного сокращения; сужает просвет сосудов. Вещество ацетилхолин замедляет сердечную деятельность, уменьшает частоту. Изменяют ритм сердца ионы К+ и Са2+; К+ - в крови замедляет Са2+ - увеличивает частоту. 63. Дыхание, его основные этапы. Механизм внешнего дыхания. Биомеханика вдоха и выдоха. Дыхание - это совокупность процессов, благодаря которым организм потребляет кислород из окружающей среды и выделяет углекислый газ. Этапы дыхания: 1. Внешнее дыхание /вентиляция легких/ - обмен газов между атмосферным воздухом и альвеолярным, легочная вентиляция. 2. Диффузия газов в легких - обмен газов между альвеолярным воздухом и кровью в капиллярах легких. 3. Транспорт газов кровью - этот этап осуществляется за счет деятельности сердечно-сосудистой системы, в результате чего кислород доставляется к тканям, а углекислый газ - к легким. 4. Диффузия газов в тканях - обмен газов между кровью и тканями. 5. Тканевое дыхание - окислительно-восстановительные реакции, протекающие с потреблением кислорода и выделением углекислого газа. Первые 4 этапа изучает физиология, последний, 5-ый - биохимия. Внешнее дыхание В обеспечении вентиляции легких участвуют три анатомо-физиологических образования: 1) дыхательные пути, обладают небольшой растяжимостью и сжимаемостью, формируют поток воздуха, 2)легочная ткань, обладает высокой растяжимостью и эластичностью/ способность принимать исходное положение после прекращения деформирующей (растягивающей) силы, 3) грудная клетка, пассивная костно–хрящевая основа, ригидная к внешним воздействиям, объединенная в целое связками и дыхательными мышцами, снизу – подвижная диафрагма. Взаимодействие грудной клетки и легких Грудная клетка и легкие разделены плевральной полостью, которая представляет собой герметичную щель, содержащую небольшое количество жидкости (5 мл). Объем грудной клетки больше, чем объем легких. Поэтому легкие все время растянуты. Степень растяжения легких определяется транспульмональным давлением /разница между давлением в легких (альвеолах) и плевральной полости. В области диафрагмы это давление обозначается как трансдиафрагмальное. При этом в легких постоянно действует сила, стягивающая их, которая получила название "эластической тяги легких". Она зависит не только от эластичности легких, но, в значительной степени, и от силы поверхностного натяжения слизи, покрывающей альвеолы. Жидкость покрывает огромную поверхность альвеол и тем самым стягивает их. Однако сила поверхностного натяжения альвеол уменьшается за счет вырабатываемого в легких вещества сурфактанта. Благодаря этому легкие становятся более растяжимыми. Эластичная тяга легких создает отрицательное давление в плевральной полости. При выдохе оно равно - 6 мм рт.ст. На вдохе при растяжении грудной клетки давление в плевральной полости становится еще более отрицательным - 10 мм рс.ст. Легкие - максимально приспособлены для газообмена. Наличие газообмена между легкими и кровью постоянно требует обновления воздуха в легких /альвеолярного воздуха/, т.к. газовый состав воздуха будет постоянно изменяться в сторону снижения концентрации О2 и накопления СО2. Вентиляция легких, т.е. обмен газов между внешней средой и альвеолярным воздухом обеспечивается за счет вдоха /инспирация/ и выдоха /экспирация/, которые характеризуются глубиной вдоха и выдоха и частотой дыхания. Выделяют два вида дыхательных движений - спокойный вдох и выдох и форсированный вдох и выдох. Для нормального газообмена в атмосфере с обычным газовым составом здоровому взрослому человеку в спокойном состоянии необходимо 14-18 дыхательных движений в минуту, при длительности вдоха 2 с., объемной скорости вдоха 250 мл/с. При вдохе преодолевается ряд сил: 1) эластическое сопротивление грудной клетки, 2)эластическое сопротивление внутренних органов, оказывающих давление на диафрагму, 3) эластическое сопротивление легких, 4) вязко-динамическое сопротивление всех перечисленных выше тканей, 5) аэродинамическое сопротивление дыхательных путей, 6) силу тяжести грудной клетки, 7) силы инерции перемещаемых масс/органов/ 64.Давлениие в плевральной полости. Физиология дыхательных путей. Регуляция их просвета. Механизм нарушения при пневмотораксе. Внутриплевральное давление — давление в герметично замкнутой плевральной полости между висцеральными и париетальными листками плевры. В норме это давление является отрицательным относительно атмосферного. Внутриплевральное давление возникает и поддерживается в результате взаимодействия грудной клетки с тканью легких за счет их эластической тяги. При этом эластическая тяга легких развивает усилие, которое всегда стремится уменьшить объем грудной клетки. В формировании конечного значения внутриплеврального давления участвуют также активные силы, развиваемые дыхательными мышцами во время дыхательных движений. Эластичная тяга легких создает отрицательное давление в плевральной полости. При выдохе оно равно - 6 мм рт.ст. На вдохе при растяжении грудной клетки давление в плевральной полости становится еще более отрицательным - 10 мм рс.ст. Регуляция просвета бронхиального дерева. Сужение бронхов вызывают парасимпатические нервы, а также гормоны воспаления - гистамин, ацетилхолин, серотонин. Расширение - симпатическая нервная система и адренорецепторы. Первый вдох. После рождения прекращается поступление кислорода из крови матери. Накопление углекислоты стимулирует дыхательный центр, в результате чего сокращаются дыхательные мышцы. У плода грудная клетка находится в спавшемся состоянии, т.к. головки ребер расположены вне своих суставных ямок. При первом вдохе ребра не просто поднимаются, а головки занимают свои суставные ямки, грудная клетка меняет форму, она резко увеличивается в размере, легкие остаются растянутыми. Понятие о пневмотораксе. Попадание воздуха в плевральную полость извне /открытый пневмоторакс /или из полости легких/закрытый пневмоторакс/ уравновешивает давление в плевральной полости с атмосферным и легкое за счет эластической тяги спадается. У человека в связи с особенностями грудной полости происходит спадание одного легкого. 65. Легочные обьемы. Функциональные показатели вентиляции легких. Общая емкость легких (ОЕЛ) - количество воздуха, находящееся в легких после максимального вдоха. ОЕЛ колеблется в больших пределах (от 0,5 до 8 литров) и зависит от роста, возраста, пола, состояния легких и грудной клетки. ОЕЛ состоит из 2 частей: жизненной емкости легких (ЖЕЛ) - объема, который человек может максимально выдохнуть после глубокого вдоха (в норме ЖЕЛ=Д(олжная)ЖЕЛ±10%), остаточного объема (ОО) - объема воздуха, который остается в дыхательной системе даже после максимального выдоха (N=1-1,2 л). Увеличение ОО снижает эффективность дыхания. Делится на коллапсный объем /выходит при спадании легкого/ и минимальный объем /истинный остаточный/. Увеличение ЖЕЛ свидетельствует о повышении функциональных возможностей дыхательного аппарата. ЖЕЛ подразделяют на 3 составные части: 1. Дыхательный объем (ДО) - это объем воздуха, который человек вдыхает и выдыхает при каждом дыхательном цикле. В покое он составляет в среднем 20% от ЖЕЛ (0,3-0,6 л). 2. Резервный объем вдоха (РОвд) - воздух, который пациент может дополнительно вдохнуть, после спокойного вдоха /40% от ЖЕЛ/ (1,5-2,5 л). 3. Резервный объем выдоха (РОвд) - воздух, который пациент может максимально выдохнуть после спокойного выдоха /40% от ЖЕЛ/ (1,5-2,5 л). Сумма ОО и РОвыд получила название функциональной остаточной емкости (ФОЕ; объем воздуха, оставшийся после спокойного выдоха; N=2,5-3,5). Объем мертвого пространства (ОМП) - это воздух, находящийся в носоглотке, трахее и бронхах и не участвующий в газообмене. Это анатомическое мертвое пространство. Этот объем не доходит до альвеол и не обменивается кислородом с кровью. ОМП у взрослого составляет в среднем 140-150 мл. Чем больше этот объем, тем менее эффективно дыхание. Есть понятие физиологического мертвого пространства - к нему относятся не только воздухоносные пути, но и альвеолы, которые не кровоснабжаются /альвеолярное мертвое пространство/. Функциональные показатели легких: Коэффициент альвеолярной вентиляции (КАВ) указывает на то, какая часть воздуха обменивается при одном дыхании Частота дыхательных движений — число дыхательных движений (циклов вдох-выдох) за единицу времени (обычно минуту). Минутный объем дыхания(МОД) — количество воздуха, вентилируемое легкими за 1 мин при спокойном дыхании. Максимальная вентиляция легких (МВЛ) - объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений ФЖЕЛ — Разница между объёмами воздуха в лёгких в точках начала и конца манёвра форсированного выдоха. ОФВ1 — Объём форсированного выдоха за первую секунду манёвра форсированного выдоха. Индекс Тиффно (ИТ) – отношение ОФВ1 к ЖЕЛ, выраженное в %. В норме ИТ равен 70-85 %. Резерв дыхания (РД) – показатель, характеризующий возможность пациента увеличить легочную вентиляцию (в норме 50-140 л): КИК– коэффициент использования кислорода – характеризует количество кислорода, потребляемого из вдыхаемого воздуха за одну минуту 66. Методы исследования внешнего дыхания. Спирометрия. Спирография. Комп Спироанализ. Внешнее дыхание — газообмен между организмом и окружающим его атмосферным воздухом. Внешнее дыхание включает обмен газов между атмосферным и альвеолярным воздухом, а также газообмен между кровью легочных капилляров и альвеолярным воздухом. Методы оценки дыхательной функции легких: Пневмография Спирометрия Спирография Пневмотахометрия Рентгенография Рентгеновская компьютерная томография Ультразвуковое исследование Магнитно-резонансная томография Бронхография Бронхоскопия Радионуклидные методы Метод разведения газов |