Главная страница
Навигация по странице:

  • Нейронная сеть.

  • Рефлекторная дуга

  • Возвратным торможение

  • Реципрокное (сопряженное) торможение

  • Латеральное торможение

  • Вторичное торможение

  • Пессимальное торможение

  • Торможение вслед за возбуждением

  • Принцип реципрокности

  • Общий конечный путь

  • Физиология. Физиология ЧЕПЕНКО. Функциональная модель нейрона


    Скачать 63.09 Kb.
    НазваниеФункциональная модель нейрона
    АнкорФизиология
    Дата10.05.2023
    Размер63.09 Kb.
    Формат файлаdocx
    Имя файлаФизиология ЧЕПЕНКО.docx
    ТипДокументы
    #1120166
    страница1 из 4
      1   2   3   4

    19. Функциональная модель нейрона

    Функция нейрона заключается в его способности возбуждаться и, действуя через синапсы на другие клетки, генерировать возбуждение в них, что приводит к распространению этого процесса от одного нейрона к другому.

    Возбуждение тормозного нейрона сопровождается подавлением процесса возбуждения в клетках, на которые он действует. Процесс возбуждения включает в себя возникновение нескольких типов электрических сигналов, образование и распространение которых происходит по единым правилам во всех нервных клетках: сенсорных, моторных, вставочных и нейросекреторных. Это позволяет рассмотреть закономерности возникновения и распространения электрических сигналов на основе единой функциональной модели нейрона, пригодной для характеристики любого типа нервных клеток.

    Функциональная модель нейрона предусматривает выделение в нем четырех функциональных областей, каждая из которых предназначена для формирования одной из четырех разновидностей сигналов, характеризующих процесс возбуждения: 1) входного (постсинаптический и рецепторный потенциалы), 2) объединенного (потенциал действия), 3) проводящегося и 4) выходного (выделение медиатора)

    20.

    Нейронная сеть. Важной единицей функциональной активности ЦНС считается элементарная нейронная сеть. Принципы кооперативного поведения нейронов в сети предполагают, что совокупность взаимосвязанных элементов обладает большими возможностями функциональных перестроек, т.е. на уровне нейронной сети происходит не только преобразование входной информации, но и оптимизация межнейронных отношений, приводящая к реализации требуемых функций информационно-управляющей системы. Одним из первых идею сетевого принципа в организации нейронов выдвинул Д. Хебб, позднее появились работы В. Мак-Каллоха и К. Питса, посвященные сетям формальных нейронов.
    В отечественной психофизиологии начальным этапом в изучении нервных сетей явились работы Г.И. Полякова (1965), который с эволюционных позиций охарактеризовал принципы возникновения и функционирования нейронной сети, выделив элементарное координационное устройство как прототип сетевой "единицы".

    Типы сетей. В настоящее время сетевой принцип в обеспечении процессов переработки информации получает все большее распространение. В основе этого направления лежат идеи о сетях нейроноподобных элементов, объединение которых порождает новые системные (эмерджентные) качества, не присущие отдельным элементам этой сети.
    По характеру организации в нервной системе чаще всего выделяют три типа сетей: иерархические, локальные и дивергентные. Первые характеризуются свойствами конвергенции (несколько нейронов одного уровня контактируют с меньшим числом нейронов другого уровня) и дивергенции (нейрон нижележащего уровня контактирует с большим числом клеток вышележащего уровня). Благодаря этому информация может многократно фильтроваться и усиливаться. Наиболее характерен такой тип сетей для строения сенсорных и двигательных путей. Сенсорные системы организованы по принципу восходящей иерархии: информация поступает от низших центров к высшим. Двигательные, напротив, организованы по принципу нисходящей иерархии: из высших корковых центров команды поступают к исполнительным элементам (мышцам). Иерархические сети обеспечивают очень точную передачу информации, однако выключение хотя бы одного звена (в результате травмы) приводит к нарушению работы всей сети.
    В локальных сетях поток информации удерживается в пределах одного иерархического уровня, оказывая на нейроны-мишени возбуждающее или тормозящее действие, что позволяет модулировать поток информации. Таким образом, нейроны локальных сетей действуют как своеобразные фильтры, отбирая и сохраняя нужную информацию. Предполагается, что подобные сети имеются на всех уровнях организации мозга. Сочетание локальных сетей с дивергентным или конвергентным типом передачи может расширять или сужать поток информации.
    Дивергентные сети характеризуются наличием нейронов, которые, имея один вход, на выходе образуют контакты с множеством других нейронов. Таким путем эти сети могут влиять одновременно на активность множества элементов, которые при этом могут быть связаны с разными иерархическими уровнями. Являясь интегративными по принципу строения, эти сети, по-видимому, выполняют централизованную регуляцию и управление динамикой информационного процесса.

    21.

    Рефлекс (от лат. "рефлексус" - отражение) - реакция организма на изменения внешней или внутренней среды, осуществляемая при посредстве центральной нервной системы в ответ на раздражение рецепторов.

    Рефлексы проявляются в возникновении или прекращении какой-либо деятельности организма: в сокращении или расслаблении мышц, в секреции или прекращении секреции желез, в сужении или расширении сосудов и т. п.

    Благодаря рефлекторной деятельности организм способен быстро реагировать на различные изменения внешней среды или своего внутреннего состояния и приспособляться к этим изменениям. У позвоночных животных значение рефлекторной функции центральной нервной системы настолько велико, что даже частичное выпадение ее (при оперативном удалении отдельных участков нервной системы или при заболеваниях ее) часто ведет к глубокой инвалидности и невозможности осуществлять необходимые жизненные функции без постоянного тщательного ухода.

    Обратная афферентация (обратная связь) — информация от исполнительного органа в центральную нервную систему, где происходит анализ того, что должно быть и что произошло в ответ на действие раздражителя.

    На основании этого анализа от центра посылаются корректирующие импульсы к органу-исполнителю и к рецепторам. Эти сигналы могут увеличить или уменьшить их функциональную активность. Обратная связь в рефлексе обеспечивает автоматическое саморегулирование и образует самостоятельную функциональную систему, называемую рефлекторным кольцом, а также гарантирует автоматическую оценку и совершенное управление любым рефлекторным актом. Такие функциональные системы, обеспечивающие регулирование поведенческих реакции, называются нервными центрами.

    Рефлекторная дуга - это путь, по которому раздражение (сигнал) от рецептора проходит к исполнительному органу. Структурную основу рефлекторной дуги образуют нейронные цепи, состоящие из рецепторных, вставочных и эффекторных нейронов. Именно эти нейроны и их отростки образуют путь, по которому нервные импульсы от рецептора передаются исполнительному органу при осуществлении любого рефлекса.

    22.

    Нервный центр — совокупность структур центральной нервной системы, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт.

    Основными клеточными элементами нервного центра являются многочисленные нейроны, скопление которых формирует нервные ядра. В состав центра могут входить нейроны, рассеянные за пределами ядер. Нервный центр может быть представлен структурами мозга, располагающимися на нескольких уровнях центральной нервной системы (центры регуляции дыхания, кровообращения, пищеварения).

    Любой нервный центр состоит из ядра и периферии.

    Ядерная часть нервного центра представляет собой функциональное объединение нейронов, в которое поступает основная информация от афферентных путей. Повреждение этого участка нервного центра приводит к повреждению или существенному нарушению осуществления данной функции.

    Периферическая часть нервного центра получает небольшую порцию афферентной информации, и ее повреждение вызывает ограничение или уменьшение объема выполняемой функции.

    дностороннее проведение возбуждения. Это свойство отдельного синапса и нервной цепи. В нервном центре может быть множество путей между входами и выходами. За счёт обратных связей возможно возвратное движение возбуждения. Но это происходит внутри нервного центра. А если рассматривать нервный центр целиком, то возбуждение приходит внего по приходящим путям, а выходит по эфферентным выходящим. Таким образом, можно говорить об одностороннем проведении возбуждения нервным центром.

    Задержка (замедление) проведения возбуждения. В нервных центрах возникает задержка в проведении возбуждения, так называемый латентный (скрытый) период. Задержка обусловлена синаптической передачей возбуждения. Чем больше синапсов участвует в проведении возбуждения, тем более длительной получается задержка.

    Суммация возбуждения. Если одновременно подавать возбуждение на несколько входов нервного центра, то на выходе можно получить более сильное возбуждение. Свойством суммации обладает и отдельный нейрон за счёт суммации локальных потенциалов.

    Трансформация (преобразование) входящего возбуждения в иное - выходящее. Нервный центр осуществляет изменение, перекодирование поступающих в него потоков импульсов. Трансформация возбуждения - это, пожалуй, самое главное свойство нервного центра. Наиболее известное свойство из этого ряда – трансформация ритма. Нервный центр получает на входе один ритм импульсации, а на выходе дает другой (более медленный или более частый).

    Иррадиация возбуждения. Это "растекание возбуждения" по нервному центру, распространение возбуждения на новые участки от места его первоначального появления.

    23.

    Торможение – активный, срочный процесс прекращения или задержки текущей функции под действием раздражителя.

    Процесс торможения в центральной нервной системе был открыт в 1862 г. И. М. Сеченовым. В опытах на лягушках он делал поперечные разрезы головного мозга на различных уровнях и раздражал нервные центры, накладывая на разрез кристаллик поваренной соли. При этом обнаруживалось, что при раздражении промежуточного мозга наступает угнетение или полное торможение спинномозговых рефлексов: лапка лягушки, погруженная в слабый раствор серной кислоты, не отдергивалась.

    Постсиналтическое торможение — основной вид торможения, развивающийся в постсинаптической мембране аксосоматических и аксодендритических синапсов под влиянием активации тормозных нейронов, в концевых разветвлениях аксонных отростков которых освобождается и поступает в синаптическую щель тормозной медиатор. Тормозной эффект таких нейронов обусловливается специфической природой медиатора — химического переносчика сигнала с одной клетки на другую. Наиболее распространенным тормозным медиатором является гамма-аминомасляная кислота (ГАМК). Химическое действие ГАМК вызывает в постсинаптической мембране эффект гиперполяризации в виде тормозных постсинаптических потенциалов (ТПСП), пространственно-временная суммация которых повышает уровень мембранного потенциала (гиперполяризация), приводит к урежению или полному прекращению генерации распространяющихся ПД.

    Пресинаптическое торможение возникает перед синаптическим контактом – в пресинаптической области. Окончание аксона одной нервной клетки (терминаль) образует синапс на окончании аксона другой нервной клетки и блокирует передачу возбуждения в последней. В области такого пресинаптического контакта развивается чрезмерно сильная деполяризация мембраны аксона, которая приводит к угнетению проходящих здесь потенциалов действия.

    24.

    Возвратным торможение называется угнетение активности нейрона, вызываемое возвратной импульсацией по коллатерали его аксона. Осуществляется вставочными тормозными клетками (клетками Реншоу). Аксоны мотонейронов часто дают коллатерали (ответвления), оканчивающиеся на клетках Реншоу. Аксоны клеток Реншоу оканчиваются на теле или дендритах этого мотонейрона, образуя тормозные синапсы. Возбуждение, возникающее в мотонейроне, распространяется по коллатералям к тормозящему нейрону, который посылает импульсы к мотонейронам и тормозит их. Чем сильнее возбуждение мотонейрона, тем сильнее возбуждаются клетки Реншоу и тем более интенсивно они оказывают свое тормозящее действие, что предохраняет нервные клетки от перевозбуждения.

    Реципрокное (сопряженное) торможение (открыто Ч. Шеррингтоном), обеспечивает согласованную работу мышц-антагонистов

    Пр. при сгибании ног в коленном суставе развивается возбуждение в спинномозговом центре мышц-сгибателей и одновременно развивается торможение в нервном центре мышц-разгибателей. Наоборот, при разгибании, в нервном центре мышц-разгибателей наступает возбуждение, а в центе мышц-сгибателей – торможение.

    Реципрокное возбуждение возникает при более сложных двигательных актах,

    Пр. при ходьбе происходит сгибание, то одной, то другой ноги. Если в данный момент правое колено согнуто, то в центре сгибателей правой ноги развивается возбуждение, а в центре ее разгибателей – торможение. На левой стороне имеются противоположные взаимоотношения – центры разгибателей левой ноги возбуждены, а центры сгибателей заторможены. Во время следующего шага соотношения возбуждения и торможения в нейронах меняются в противоположном направлении.

    Реципрокное торможение осуществляется при участии тормозящих вставочных неронов спинного мозга. Реципрокные соотношения между отдельными центрами не постоянны и в типичной форме они выявляются лишь у спинальных животных. Реципрокное торможение может изменяться под влиянием нейронов, расположенных выше спинальных центров.

    Пр. обе ноги могут согнуться одновременно вопреки описанному выше сопряженному торможению центров сгибателей и разгибателей.

    Изменчивость взаимодействия между двигательными центрами обеспечивает сложнейшие движения человека во время разнообразной трудовой деятельности, сложных спортивных движений, танцев, игры на музыкальных инструментах и др.

    Латеральное торможение является разновидностью возвратного торможения. Вставочные клетки могут формировать тормозные синапсы на соседних нейронах, блокируя боковые пути распространения возбуждения. В таких случаях возбуждение направляется по строго определенному пути. Этот вид торможения обеспечивает направленную иррадиацию возбуждения ЦНС.

    25.

    Вторичное торможение

    Вторичное торможение возникает в тех же нейронах, которые генерируют возбуждение.

    Виды вторичного торможения

    Пессимальное торможение — это вторичное торможение, которое развивается в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под действием множественной импульсации.

    Торможение вслед за возбуждением возникает в обычных нейронах и также связано с процессом возбуждения. В конце акта возбуждения нейрона в нем может развиваться сильная следовая гиперполяризация. В то же время возбуждающий постсинаптический потенциал не может довести деполяризацию мембраны докритического уровня деполяризации, потенциалзависимые натриевые каналы не открываются и потенциал действия не возникает.

    26.

    Принцип реципрокности. Примером координационного взаимодействия рефлексов является реципрокная иннервация мышц-антагонистов.

    Общий конечный путь (принцип «воронки» Шеррингтона). Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути».

      1   2   3   4


    написать администратору сайта