Геодезический контроль осадок. геодезический контороль осадок зданий и сооружений промышленных предприятий
Скачать 482.5 Kb.
|
Таблица 7Технические характеристики государственного нивелирования I, II, III и IV классов
Таблица 8 Технические характеристики разрядного нивелирования для измерения осадок гидротехнических сооружений
Таблица 9 Технические характеристики разрядного геометрического нивелирования для измерения деформаций оснований зданий и сооружений (выписка из ГОСТ 24846-81)
Таблица 10Технические характеристики геометрического нивелирования специальных классов
Каждая из приведенных видов классификаций и методик нивелирования имеет свои положительные и отрицательные стороны в зависимости от объектов и условий контроля. Классификация и методика государственного нивелирования хорошо приспособлены для ведения геодезических работ на больших территориях, когда реперы расположены на большом удалении друг от друга и необходимо получить их отметки с наименьшими затратами средств и временя при заданной точности измерений на километр хода. В этих случаях стараются работать на предельных длинах визирных лучей, пользоваться для ускорения работ двумя рейками, а измерения вести по башмакам или костылям. Так как ходы большой протяженности, то методика измерений направлена в значительной мере на уменьшение систематических погрешностей, влияние которых на точность возрастает по мере увеличения длин ходов. Для наблюдений за осадками зданий сооружений и оборудования промышленных предприятий этот вид классификации и методики измерений мало пригоден из-за недостаточной точности измерения превышений по контролю оборудования, где часто требуются точности выше первого класса, необходимости применения различных по точности приборов, реек и приспособлений при смене классов нивелирования, что создает ряд неудобств при производстве работ в производственных цехах. Классификация и методика для измерения осадок гидротехнических сооружений хорошо приспособлены для ведения геодезических работ на специфических (как правило, построенных по индивидуальным проектам) сооружениях - протяженных плотинах, каналах, шлюзах. Осадочные марки расположены на бетонных сооружениях через 20 - 40 м, а на земляных сооружениях через 100 - 200 м. Точность измерений превышений входах на бетонных и земляных плотинах существенно различается, что и проявляется в разработанных для этой целя классификации и методике нивелирования. Для контроля осадок и деформаций зданий, сооружений и оборудования в других отраслях промышленности этот вид классификации и методики измерений применяется редко. Классификация и методика нивелирования для измерения деформаций оснований зданий и сооружений по своим характеристикам близки к государственному нивелированию. Это связано с основной целью наблюдений - определением параметра «абсолютная осадка» фундамента, в то время как контроль параметров, характеризующих деформации взаимосвязанных конструкций объектов, находится на втором плане. Поэтому, из-за точности измерений превышений на станции, длин визирных лучей и их неравенства и других характеристик, данный вид нивелирования не получил широкого распространения для контроля технического состояния конструкций сооружений и оборудования промышленных предприятий. Классификация и методика геометрического нивелирования специальных классов разработаны для контроля осадок и деформаций сооружений и оборудования промышленных предприятий. Точность измерений превышений на станциях, а также все другие основные характеристики нивелирования позволяют контролировать наиболее распространенные виды деформаций сооружений иоборудования многочисленных промышленных предприятий. При этом измерения во всех классах нивелирования выполняются нивелирами и рейками одной точности, что создает удобство и возможность быстрого выполнения работ при большом количестве марок на объектах предприятия и разной точности намерений превышений в ступенях. Методы гидростатического и гидродинамического нивелирования являются менее распространенными при изучении осадок сооружений и оснований, чем метод геометрического нивелирования, но для ряда объектов и условий контроля являются предпочтительными. Наибольшее применение они находят благодаря своим достоинствам: - обращение с оборудованием и производство измерений не требуют высокой квалификации исполнителей; возможность определения осадок точек, доступ к которым затруднен и в некоторых случаях вообще отсутствует; при использовании гидростатических стационарных систем время и трудозатраты на непосредственное измерение осадок значительно меньше, чем при геометрическом нивелировании; - возможность автоматизации процессов измерений; - в благоприятных условиях точность гидростатического нивелирования может быть более высокой, чем при геометрическом нивелировании. В то же время гидростатические приборы и системы имеют и ряд серьезных недостатков, не позволяющих использовать их широко в практике контроля деформаций многих объектов промышленных предприятий. К ним относятся: - колебание температуры, которое приводит к изменению плотности жидкости, а следовательно, и высот столбов жидкости, что не позволяет применять повсеместно гидростатический метод в производственных цехах, особенно это проявляется в системах с перераспределением жидкости; - влияние вибрационных нагрузок от работающего оборудования на точность отсчитывания, что не позволяет применять этот метод на сооружениях и оборудовании со значительными динамическими нагрузками; - малый диапазон измеряемых превышений, что затрудняет работы по установке КИА и использование метода при больших осадках и деформациях; большие затраты на установку, проверку и обслуживание автоматизированных систем контроля, что делает выгодным его использование только при непрерывном контроле или периодическом контроле с высокой частотой замеров; отсутствие общепринятых классов и методик гидростатического, гидродинамического нивелирования и приборов с перераспределением жидкости, что затрудняет метрологическое обеспечение геодезических работ на контролируемых объектах. Исходя из перечисленных выше преимуществ и недостатков, переносные приборы гидростатического нивелирования целесообразно применять при измерении осадок объектов с летучим или периодическим контролем, где требуются точности измерения превышений выше, чем это может обеспечить геометрическое нивелирование, при этом отсутствуют большие перепады температуры окружающей среды и действуют незначительные вибрационные нагрузки, а измерения приходится производить в стесненных для других методов условиях. Стационарные гидростатические и гидродинамические системы целесообразно применять при измерении осадок объектов с непрерывным или частым периодическим контролем и требуемой высокой точностью измерений. При этом температурные и вибрационные нагрузки на систему должны быть незначительными. Автоматизированные стационарные системы, дополнительно к сказанному, целесообразно создавать и при контроле деформаций сооружений на разных уровнях и в разных помещениях, что позволит значительно ускорить и удешевить съем информации. Метод тригонометрического нивелирования для контроля осадок применяется значительно реже по сравнению с методами геометрического и гидростатического нивелирования. Это связано с относительно низкой точностью измерений превышений и значительными затратами, связанными с точными измерениями не только вертикальных углов, но и линий. Однако, в настоящее время, в связи с созданием высокоточных электронных тахеометров, роль его значительно возрастает. Свое место он находит там, где методы геометрического и гидростатического нивелирования неприемлемы по причине значительных перепадов высот или недоступности КИА - определение осадок арочных плотин, земляных плотин и насыпей, глубоких котлованов. Особенно хорошие результаты можно получить при контроле объектов, где одновременно необходимо контролировать как вертикальные, так и горизонтальные перемещения - оползания откосов земляных плотин, бортов водохранилищ и др. Методы обработки первичной и вторичной информации и документация контроля. Документация, отражающая результаты геодезического контроля осадок, может проектироваться в виде акта, заключения или технического отчета. Эта документация должна содержать материалы первичной и вторичной обработки информации по контролю осадок. Как правило, при проектировании видов первичной документации по обработке результатов измерений осадок необходимо определить перечень обязательных отчетных документов, характеризующих полноту и качество самих геодезических измерений. Перечень таких документов подбирают в зависимости от категории объекта, проектируемых методов и средств измерений, наличия программного обеспечения вычислительных и оформительских работ у контролеров. Типовой набор документов по обработке результатов измерений осадок включает: оформленные и проверенные полевые журналы или электронные носители первичной информации; результаты исследований нивелира и реек с актом метрологической аттестации; схемы размещения геодезической КИА со схемой нивелирования; материалы уравнивания нивелирования с оценкой точности результатов измерений и сравнительной характеристикой расчетной и фактически полученной точности; результаты оценки неподвижности исходных реперов; ведомость отметок и осадок марок. При проектировании видов вторичной документации, отражающей результаты геодезического контроля, следует также учитывать как категорию объекта контроля, так и требования проектировщиков и эксплуатационников к качеству и содержанию материалов, отображающих реальную картину происходящих с сооружением и основанием процессов и явлений. Как правило, в проектах по контролю осадок объектов промышленных предприятий указывают следующие основные документы: - ведомости или таблицы фактически полученных и допускаемых величин контролируемых геометрических параметров как отдельных конструкций, так и объектов в целом - средних осадок объектов, относительных разностей осадок рам, прогибов, наклонов и т. п.; по ним путем простого сравнения устанавливают степень соответствия полученных осадок и деформаций установленным нормам; - графики развития осадок фундаментов конструкций объектов во времени, по которым судят о степени развития процесса деформации каждого контролируемого элемента объекта во времени; графики линий равных осадок фундаментов объектов, по которым наглядно определяют места воронок оседания частей сооружения и основания и тем самым уточняют места поиска причин возникновения осадок; развернутые графики осадок фундаментов объектов, на которых наглядно изображают деформации рам каркасов зданий, вследствие неравномерных осадок фундаментов; материалы прогнозирования деформаций по данным геодезических измерений (в случаях больших отклонений от проектных величин). Документация, отражающая результаты геодезического контроля, заканчивается анализом осадок и деформаций объектов и выводами. ЗаключениеВ ходе проведенной работы был произведен геодезический контроль осадок термического цеха автозавода по общей технологической схеме контроля осадок. Согласно расчету точности, получены следующие СКП измерения превышений: в первой ступени – 0,55 мм, во второй ступени – 0,24 мм, в ходе связи – 0,45 мм. На основании полученных погрешностей и характеристик нивелирования были назначены следующие классы нивелирования: - в первой ступени – ГН-050 или III класс государственного нивелирования, III разряд для гидросооружений, III класс по измерению деформаций оснований; - во второй ступени – ГН-010 или IΙ класс государственного нивелирования, III разряд для гидросооружений, II класс по измерению деформаций оснований; - в ходе связи между ступенями - ГН-050; или III класс государственного нивелирования III разряд для гидросооружений, III класс по измерению деформаций оснований. В первой ступени и в ходе связи между ступенями могут применяться нивелир Н-3 и равноточные ему. Во второй ступени могут применяться нивелиры Н-05, Ni-002, Ni-004, Ni-007 или им равноценным по точности приборам. Список использованной литературыЖуков Б.Н. Геодезический контроль сооружений и оборудования промышленных предприятий: Монография. – Новосибирск: СГГА, 2003. – 356 с. Жуков Б.Н. Руководство по геодезическому контролю сооружений и оборудования промышленных предприятий при их эксплуатации. – Новосибирск: СГГА, 2004. – 376 с. Жуков Б.Н., Карпик А.П. Геодезический контроль инженерных объектов промышленных предприятий и гражданских комплексов. – Новосибирск: СГГА, 2006. – 147 с. |