Главная страница
Навигация по странице:

  • 9.2. Явление гидравлического удара

  • 9.3. Скорость распространения упругих волн в трубопроводе

  • 9.4. Методы предотвращения негативных явлений гидравлического удара и его использование

  • 10. Движкние газа по трубам 10.1. Основные положения и задачи

  • 10.2. Основные уравнения газодинамики

  • 11. Безнапорное движение жидкости

  • 11.1. Классификация безнапорных потоков

  • Гидравлика. Лекция по гидравлики. Гидравлика представляет собой теоретическую дисциплину, изучающую вопросы


    Скачать 1.29 Mb.
    НазваниеГидравлика представляет собой теоретическую дисциплину, изучающую вопросы
    АнкорГидравлика
    Дата18.12.2021
    Размер1.29 Mb.
    Формат файлаdoc
    Имя файлаЛекция по гидравлики.doc
    ТипДокументы
    #307701
    страница9 из 11
    1   2   3   4   5   6   7   8   9   10   11

    9. Неустановившееся движение жидкости в трубопроводе 9.1. Постановка вопроса, требования к модели и допущения

    Вопросы изучения неустановившегося движения реальной жидкости очень сложны. Если окажется необходимым получить самое общее решение поставленной задачи, то придётся рассматривать систему уравнений, в составе которой будут входить:

    уравнение Навье-Стокса,

    уравнение неразрывности,

    уравнение состояния жидкости,

    - уравнение термического состояния жидкости, уравнение первого закона термодинамики.

    Следует отметить, что данная система настолько сложна и трудоёмка в своём реше­нии, что сразу же стоит рассмотреть вопросы о необходимости принятия некоторых до­пущений и ограничений, облегчающих решение поставленной задачи. Другими словами, необходимо определить из соображений практики степень детальности построения моде­ли, откуда станут очевидными требования к описанию объекта изучения. Так, рассматри­ваемый объект (жидкость) должна обладать упругими свойствами (быть сжимаемой), де­формация жидкости должна происходить в пределах пропорциональности, что соответст­вует закону Гука. Следует также учитывать упругие свойства самого трубопровода, дру­гие внешние среды не рассматриваются. Движение жидкости считается одномерным. Можно также пренебречь и теплопотерями во внешнюю среду.

    Приняв такие ограничения, можно полную систему уравнений заменить на систему из двух дифференциальных уравнений Н.Е. Жуковского:

    где: - адиабатический модуль упругости жидкости.

    Однако даже для решения этой довольно простой системы придётся преодолеть не­малые трудности. По сути дела обычно рассматривают одну из хорошо известных моде­лей процесса неустановившегося движения жидкости: модель несжимаемой жидкости,

    - модель сжимаемой жидкости с сосредоточенными параметрами,

    - модель сжимаемой жидкости с рассосредоточенными параметрами.

    Строго говоря, процесс изменения давления в жидкости во времени уподобляется волновым процессам в упругой среде, модель среды должна относиться к моделям с рас-

    пределёнными параметрами. Однако подходить к выбору модели следует, прежде всего, исходя из практики работы предприятий горных отраслей промышленности. По этой при­чине остановимся на изучении проблем, связанных с явлением гидравлического удара в круглых трубах и на базе решения этой практической задачи рассмотрим основные урав­нения неустановившегося движения жидкости. Явление гидравлического удара характе­ризуется большими скоростями распространения ударной волны и значительными вели­чинами возникающих при этом давлений, периоды колебаний давления составляют доли секунды, благодаря чему действием сил трения можно пренебречь. 9.2. Явление гидравлического удара

    Явление гидравлического удара возникает при резком изменении скорости движения жидкости в трубопроводе (вплоть до его мгновенного закрытия). В таких случаях проис­ходит переход кинетической энергии движущейся жидкости в потенциальную энергию покоящейся жидкости. Однако такой переход не мгновенный, а протекает с определённой скоростью, зависящей от свойств жидкости и материала трубопровода. Кроме того, этот процесс носит волновой характер. Покажем на простом примере, что гидравлический удар - процесс колебательный, т.е. волновой.

    Резервуар А соединён с трубопрово­дом длиной /, на конце трубопровода уста­новлена задвижка. Размеры резервуара та­ковы, что при отборе жидкости из него уро­вень жидкости в резервуаре практически не понижается. Также для упрощения модели пока будем считать саму трубу недеформи­руемой. Примем за начало отсчёта точку О, расположенную на оси трубы в плоскости задвижки. Если потерями напора на трение при движении жидкости пренебречь, то пьезометрическая линия будет горизон­ тальной. Если бы жидкость была несжи­маемой, то при резком закрытии задвижки

    мгновенно остановилась бы вся масса жидкости находящаяся в трубе, что вызвало бы мгновенный рост давления во всей жидкости. На самом деле в упругой жидкости процесс будет развиваться иначе. В момент резкого закрытия задвижки остановится только тонкий слой жидкости, непосредственно примыкающий к задвижке, остальная масса жидкости

    будет продолжать движение За бесконечно малый промежуток времени (длительность процесса остановки) остановится масса жидкости в объеме первого тонкого слоя.

    где: - - толщина тонкого слоя жидкости,

    S - площадь внутреннего сечения трубы.

    Если обозначить давление в точке О до закрытия затвора через , а через дав-

    ление после мгновенного закрытия задвижки, то по теореме об изменении количества движения можно вычислить

    или: где:

    Или;

    Затем в следующий момент времени остановится следующий слой жидкости, потом третий и т.д. Так постепенно увеличенное давление у задвижки распространится по всему

    трубопроводу в направлении против течения жидкости Тогда величина представ-

    ляет собой скорость распространения упругой (ударной) волны. По истечении времени

    вся жидкость в трубопроводе станет находиться в сжатом состоянии. Но теперь возник перепад давления между жидкостью в резервуаре и жидкостью в трубе, в результате чего начнётся движение упругой жидкости из трубопровода обратно в резервуар. По истечении

    такого же временного интервала , давление жидкости у задвижки понизится на величи­ну , т.е достигнет первоначального значения. При этом процесс движения жидкости в резервуар будет продолжаться, пока пониженное давление не распространится до конца трубопровода (до резервуара). Таким образом, давление у задвижки буде сохраняться на

    постоянном уровне в течение времени , а продолжительность всего цикла гидравличе­ского удара будет равна . За это время давление у задвижки в течение половины этого

    времени будет максимальным , в течение другой половины времени - минималь-

    ным

    9.3. Скорость распространения упругих волн в трубопроводе

    Рассмотрим общую задачу о распространении упругой волны в трубопроводе с упру­гими стенками (т.е. с учётом сжимаемости материала труб). Выделим элемент трубопро­вода протяжённостью , в котором жидкость остановилась в течение времени , а давление возросло на величину:

    В остальной части трубы жидкость продолжает двигаться и за время А/ в выделен­ный остановившийся элемент жидкости за счёт её сжатия и сжатия стенки трубы поступит дополнительный объём жидкости:

    где: и - начальная площадь трубы и скорость движения жидкости до

    момента удара.

    Разделим этот дополнительный объём на два составляющих объёма (за счёт сжатия жидкости и за счёт сжатия трубы

    или:

    где: - увеличение площади сечения трубы за счёт упругости её материала.



    или:



    Отсюда скорость распространения упругой волны в жидкости:



    Относительное удлинение размера трубы (её радиуса):



    Принимая во внимание, что: - (Е- модуль Юнга материала трубы).

    где: - нормальное напряжение,

    - толщина стенки трубы.

    f j.

    тогда:



    Величину называют приведённым модулем упругости. С учётом

    принятых обозначений:

    9.4. Методы предотвращения негативных явлений гидравлического удара и его использование

    Резкое увеличение давления, сопровождающее гидравлический удар - явление край­не негативное, т.к. гидравлический удар может разрушить трубопровод или какие-либо элементы гидравлических машин, испытывающие эффекты гидравлического удара. По этой причине разрабатываются методы предотвращения гидравлических ударов или уменьшить его негативное влияние. Поскольку мощность гидравлического удара напря­мую зависит от массы движущийся жидкости, то для предотвращения гидравлического удара следует максимально уменьшить массу жидкости, которая будет участвовать в гид­равлическом ударе. Для этого необходимо запорную арматуру монтировать в непосредст­венной близости к резервуару. В качестве меры уменьшения негативных последствий гидравлического удара используют замену прямого гидравлического удара на непрямой. Для этого достаточно запорную арматуру на напорных трубопроводах сделать медленно закрывающейся, что позволит уменьшить силу удара. Другой мерой борьбы с явлением гидравлического удара является установка на напорных линиях, работающих в условиях

    циклической нагрузки специальных компенсаторов с воздушной подушкой, которая при­нимает на себя удар

    Однако в ряде случаев явление гидравлического удара успешно используется. К та­ким случаям использования гидравлического удара относятся производственные процес­сы по разрушению материалов и др. Известна специальная конструкция водоподъёмника, базирующаяся на использовании гидравлического удара.

    10. Движкние газа по трубам 10.1. Основные положения и задачи

    Основной отличительной особенностью движения газа по трубам от движения ка­пельных жидкостей заключается в том, что капельные жидкости характеризуются весьма малой сжимаемостью, а их вязкость практически не зависит от давления. По этой причине для решения большинства практических задач капельные жидкости можно считать не сжимаемыми, что позволяет значительно упростить уравнения движения такой жидкости. При движении газа таких допущений делать нельзя. Поскольку изучение общих решений уравнений газодинамики не является предметом настоящего курса, рассмотрим лишь ча­стные задачи, встречающиеся в практике работы специалистов горных отраслей промыш­ленности. К числу таких первоочередных задач относится изучение движения газов, включая воздух по газопроводам (воздуховодам).

    Газ двигается по газопроводу при переменном давлении, т.к. давление изменяется вдоль длины газопровода из-за неизбежных потерь напора по длине трубопровода. По этой причине плотность газа и его вязкость являются величинами переменными и неоди­наковы в различных сечениях газопровода. Рассмотрим наиболее простой случай газопро­вода (воздуховода) собранного из труб одинакового диаметра (простой газопровод S = const) при установившемся движении газа. Тогда в соответствии с уравнением нераз­рывности потока газа массовый расход газа вдоль газопровода является величиной посто­янной = const. При этом объёмный расход газа будет меняться от одного сечения га­зопровода к другому, т.к. плотность газа зависит от давления, которое по длине газопро­вода меняется.

    Тогда скорость движения газа также будет меняться вдоль длины газопровода:

    При этом должна изменяться и температура газа по длине газопровода, и, как след­ствие, также и вязкость газа. Однако для решения практических задач движение газа по трубопроводу можно считать изотермическим (небольшие скорости движения, теплоизо­ляция газопровода, небольшие перепады давления). Это допущение не приведет к серьёз­ным погрешностям в расчётах, но оно позволяет пренебречь изменением вязкости газа при незначительных колебаниях температуры газа в газопроводе. Т.е. полагаем, что в га­зопроводе соблюдается условие: Т = constи = const. При таких условиях будет посто-

    янным для всего потока и число Рейнольдса, и как следствие будут одинаковым коэффи­циенты трения и гидравлических сопротивлений по длине потока.



    Отметим, что в последнем выражении все величины, входящие в правую часть ра­венства являются величинами постоянными, отсюда: Re = constи /I = const. По этой причине для определения величины потерь напора и расхода газа можно воспользоваться обычным уравнением Бернулли.

    i %

    10.2. Основные уравнения газодинамики для установившегося движения газа в простом газопроводе

    Запишем уравнение Бернулли в дифференциальной форме:





    Последний член уравнения весь мал и его величиной можно пренебречь, тогда для горизонтального газопровода (z = const) можно записать:



    Подставив в последнее уравнение значение средней скорости движения газа, выра­зив её через массовый расход, получим:



    По принятым выше условиям процесс движения газа по газопроводу является изо­термическим, тогда подставив в последнее уравнение значение из уравнения Бойля-Мариотта:

    , получим:



    Решая последнее уравнение, получим основные расчётные формулу для определения потерь давления в газопроводе и формулу для определения массового расхода газа в газо­проводе.

    >



    Величина коэффициента трения Л определяется по формулам для жидкости в зави­симости от режима её движения или же можно воспользоваться эмпирической формулой ВННИИГаза:

    * ^

    *

    где d- диаметр газопровода в сантиметрах.

    11. Безнапорное движение жидкости

    При безнапорном движении жидкости часть периметра живого сечения потока жид­кости ограничивается газовой средой, давление в которой равно атмосферному давлению. Типов безнапорных потоков достаточно много, это и безнапорное движение жидкости в трубах, и потоки жидкости в открытых руслах, и т.д. Тем не менее, несмотря на разнооб­разие таких потоков, с точки зрения гидравлики их можно разделить на установившиеся потоки с равномерным движением жидкости и неустановившиеся потоки, часто называе­мые быстротоками. Наибольший интерес для нас играют потоки первой группы, с кото­рыми чаще всего приходится встречаться специалистам горной промышленности. Быст­ротоки, как правило, являются предметом изучения для специальных дисциплин гидро­технического профиля. Поскольку установившиеся потоки жидкости, независимо от их вида совершенно одинаковы, то расчёты параметров таких потоков общие и могут быть продемонстрированы на простом примере.

    11.1. Классификация безнапорных потоков

    Прежде всего, следует отметить, что сколь-нибудь совершенной и законченной клас­сификации безнапорных потоков отвечающей их многообразию не существует, попыта­емся выделить некоторые типы потоков по их основным признакам.

    На начальной стадии разделим все потоки по их происхождению на две группы: ес­тественные (природные) и искусственные (созданные человеком). К потокам первой груп­пы будут относиться все реки и другие природные русла, отличающиеся от рек чаще всего лишь по названию, а не по своей сути.

    Аналогичные две группы потоков можно выделить и по роли и назначению потоков: потоки жидкости, используемые как средство транспорта (естественные русла - реки и искусственные русла - каналы) и потоки жидкости как средство транспорта самой же жидкости (водоводы и др. гидротехнические сооружения).

    Безнапорные потоки также можно разделить на заглублённые и наземные. К катего­рии заглублённых относятся все виды безнапорных трубопроводов. Среди безнапорных трубопроводов можно выделить трубопроводы из стальных, бетонных, асбоцементных и другого типа труб; по сечению безнапорные трубопроводы можно разделить на круглые,

    некруглые и трубопроводы специального сечения.

    Среди наземных безна­порных потоков можно вы­ делить гидротехнические системы, сооружаемые из

    готовых элементов, когда водовод монтируется на трассе и обсаживаемые. При сооруже­нии последних, как правило, предварительно сооружается земляное русло бедующего во­довода (траншея, канава и др.), после чего такое русло обсаживается водоизоляционным материалом во избежание потерь при инфильтрации жидкости в почву. Наиболее часто встечающимися формами сечения таких водоводов являются водоводы трапециевидного (1), треугольного (2) и, реже всего, прямоугольного форм сечения (3).

    Подавляющее число наземных потоков являются открытыми, т.е. сообщаются с ат­мосферой, однако, в тех случаях, когда необходимо предотвратить потери транспорти­руемой жидкости от испарения (в странах с жарким климатом), водоводы перекрывают. В ряде случаев водоводы монтируются над поверхностью земли на специальных опорах и мостовых переходах, создавая тем самым акведуки.

    И, наконец, можно разделить безнапорные потоки на постоянно действующие и ра­ботающие в сезонном режиме.
    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта