Главная страница
Навигация по странице:

  • Содержание Введение

  • 3. Экспериментальная часть

  • 6. Список литературы.

  • Целью данной работы

  • 2.Теоретическая часть Классификация нанообъектов Нанообъекты делятся на 3 основных класса:- трёхмерные частицы

  • 1.1Основные методы получения наночастиц серебра

  • Получение наночастиц серебра методом фотолиза

  • Получение наночастиц серебра с помощью лазерного излучения

  • Радиационно-химическое восстановление ионов металлов в водных растворах. Образование золей металла.

  • 1.2 Свойства наночастиц серебра.

  • 1.3 Методы исследования наночастиц

  • Оптические методы анализа

  • Исследование оптимальных условий для получения наночастиц серебра. Работу выполнила Ученица 10М класса Бахно Ирина


    Скачать 270 Kb.
    НазваниеИсследование оптимальных условий для получения наночастиц серебра. Работу выполнила Ученица 10М класса Бахно Ирина
    Дата18.09.2022
    Размер270 Kb.
    Формат файлаdoc
    Имя файлаoptimalnye_usloviya_dlya_polucheniya_nanochastits_serebra.doc
    ТипИсследование
    #683389
    страница1 из 3
      1   2   3


    муниципальное бюджетное общеобразовательное учреждение

    города Новосибирска «Лицей № 185»

    Октябрьского района

    Секция химия

    Исследование оптимальных условий для получения наночастиц серебра.

    Работу выполнила

    Ученица 10М класса

    Бахно Ирина

    Руководитель

    Булгакова Виалетта Владимировна

    Учитель химии

    Конт. тел. 89231218964

    Научный консультант

    Гулая Елена Владимировна

    Кандидат химических наук

    Конт. Тел.89607841168

    Новосибирск 2015


    Содержание


    1. Введение ………………………………………………………..2

    2. Теоретическая часть:................................................................5

    1.1 Основные методы получения наночастиц серебра…………….7

    1.2 Свойства наночастиц серебра…………………………………..10

    1.3 Методы исследования наночастиц……………………………..12

    3. Экспериментальная часть …………………………………….16

    4. Обсуждение результатов………………………………………...19

    5. Выводы.……………………………………………………………25

    6. Список литературы........................................................................26

    Приложение

    Тезисы.
    Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века.

    Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики. С одной стороны, нанотехнологии уже нашли сферы применения, с другой - они остаются для большинства населения областью научной фантастики. В будущем значение нанотехнологий будет только расти.

    В последние годы интерес к изучению и получению наноразмерных частиц существенно возрос. Это связано с тем, что открылись новые перспективные возможности использования наноматериалов во многих областях науки и техники, в частности, для получения эффективных и избирательных катализаторов, для создания элементов микроэлектронных и оптических устройств, для синтеза новых материалов. Растворы золей металлов, преимущественно золота, серебра и металлов платиновой группы, интенсивно изучались в прошедшем столетии. Среди вариантов их получения преобладают методы, основанные на восстановлении ионов металлов в растворах в присутствии высокомолекулярных соединений и ПАВ в качестве стабилизаторов, и приемы испарения и конденсации металлов.

    Целью данной работы являлось изучение процесса восстановления серебра в водных растворах и определение оптимальных условий синтеза наночастиц серебра.

    Задачи :- отработка синтеза наночастиц серебра; - исследование состава и свойств золей, содержащих наночастицы серебра.

    В ходе работы был осуществлен синтез наночастиц серебра из водного раствора нитрата серебра, в качестве восстановителя использовался тетраборат натрия. После проведенных исследований, было установлено, что эффективными восстановителями являются натрий лимоннокислый. При восстановлении натрий лимоннокислый раствор светло-коричневого (желтого) цвета, что указывает на наличие более мелких частиц серебра. Цвет раствора в зависимости от концентрации изменяется от прозрачного и бледно-желтого до ярко-желтого и коричневого. С ростом исходной концентраций ионов серебра наблюдается увеличение максимума поглощения при 420нм, что возможно связано с увеличением количества образующихся наночастиц. В ходе экспериментов установили, что процесс восстановления идёт эффективно при рН =8,34 максимальное поглощения наблюдается при длине волны 420 нм, что соответствует литературным данным. Была изучена зависимость влияния концентрации восстановителя на свойства получаемых наночастиц серебра. Установлено, что при восстановлении образуются наночастицы серебра размером до 2,98*10-4 нм.

    ВВЕДЕНИЕ

    Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века.

    Возможности их разностороннего применения в таких областях экономики, как производство полупроводников, медицина, сенсорная техника, экология, автомобилестроение, строительные материалы, биотехнологии, химия, авиация и космонавтика, машиностроение и текстильная промышленность, несут в себе огромный потенциал роста.

    Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики. С одной стороны, нанотехнологии уже нашли сферы применения, с другой - они остаются для большинства населения областью научной фантастики. В будущем значение нанотехнологий будет только расти. В специализированной области это будет пробуждать интерес, и стимулировать проведение исследовательских и опытно-конструкторских работ, а также работ по нахождению новых областей применения нанотехнологий.В последние годы интерес к изучению и получению наноразмерных частиц существенно возрос. Это связано с тем, что открылись новые перспективные возможности использования наноматериалов во многих областях науки и техники, в частности, для получения эффективных и избирательных катализаторов, для создания элементов микроэлектронных и оптических устройств, для синтеза новых материалов. Растворы золей металлов, преимущественно золота, серебра и металлов платиновой группы, интенсивно изучались в прошедшем столетии. Среди вариантов их получения преобладают методы, основанные на восстановлении ионов металлов в растворах в присутствии высокомолекулярных соединений и ПАВ в качестве стабилизаторов, и приемы испарения и конденсации металлов. В начале 1990-х годов применение радиационно-химического метода восстановления позволило получить такой химически активный металл как кадмий в коллоидной форме в водном растворе и изучить его электронные, оптические и другие свойства. Разработанный подход оказался продуктивным и его применение дало возможность за короткий срок существенно расширить круг металлов, получаемых в наноразмерном состоянии в водных растворах.

    Есть все основания полагать, что интерес к наноразмерным частицам будет сохраняться еще длительное время и это вызвано тем, что они занимают промежуточное положение между атомно-молекулярным и конденсированным состояниями вещества [1]. Из этого факта вытекают необычные их свойства. Фундаментальными задачами остаются установление их электронной структуры, характера взаимодействия со средой, изучение состояния поверхности и её влияния на устойчивость наночастицы, способности оказывать каталитическое действие на протекание разнообразных химических реакций и др.

    Цель работы: синтез золей, содержащих наночастицы серебра, и исследование их физико-химических.

    Для достижения цели решались следующие задачи:

    - отработка синтеза наночастиц серебра;

    - исследование состава и свойств золей, содержащих наночастицы серебра.
    2.Теоретическая часть
    Классификация нанообъектов

    Нанообъекты делятся на 3 основных класса:

    - трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т.д ;

    - двумерные объекты - плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т.д;

    - одномерные объекты - вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д.

    Также существуют нанокомпозиты -материалы, полученные введением наночастиц в какие либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв.

    Свойства наночастиц.

    Наиболее сильные изменения свойств наноматериалов и наночастиц наступают в диапазоне размеров кристаллитов порядка 10.-100нм. Для наночастиц доля атомов, находящихся в тонком поверхностном слое (

    1 нм), по сравнению с микрочастицами заметно возрастает. Так, например, оказывается, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дешевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров - белками, нуклеиновыми кислотами и др. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.

    Серебро

    Свойства у наночастиц серебра на самом деле уникальные. В первую очередь, они обладают феноменальной бактерицидной и антивирусной активностью.

    Об антимикробных свойствах, присущих ионам серебра, человечеству известно уже очень давно. Наверняка, многие слышали о целительных способностях церковной «святой воды», получаемой путем прогонки обычной воды через серебряный фильтр. Такая вода не содержит многих болезнетворных бактерий, которые могут присутствовать в обычной воде. Поэтому она способна храниться годами, не портясь и не «зацветая». В медицинской практике иногда назначают «серебряную» воду для лечения ран, язв, болезней мочевого пузыря.

    Кроме того, такая вода содержит некоторую концентрацию ионов серебра, способных нейтрализовать вредные бактерии и микроорганизмы, чем и объясняется ее благотворное влияние на здоровье человека. Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы. Как показал эксперимент, ничтожные концентрации наночастиц серебра уничтожали все известные микроорганизмы (в том числе и вирус СПИДа), не расходуясь при этом. Кроме того, в отличие от антибиотиков, убивающих не только вредоносные вирусы, но и пораженные ими клетки, действие наночастиц очень избирательно: они действуют только на вирусы, клетка при этом не повреждается! В настоящее время проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах. Но уже сейчас они находят достаточно широкое применение. Так, например, в настоящее время выпускаются зубные пасты с наночастицами серебра, которые не только очищают зубы, но и эффективно защищают от различных инфекций.

    Также небольшие концентрации наночастиц серебра добавляют в некоторые кремы из серии «элитной» косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При их использовании наблюдается также противовоспалительный и заживляющий эффект. Текстильные ткани, содержащие наночастицы серебра, обладают самодезинфицирующими свойствами. Такие ткани незаменимы для медицинских халатов, постельного белья и т.д.

    Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки, карболовой кислоты и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных. Если добавить в лакокрасочные материалы, покрывающие стены зданий, наночастицы серебра, то на покрашенных такими красками стенах и потолках не способно жить большинство патогенных микроорганизмов. Добавка в угольные фильтры для воды наночастиц серебра существенно увеличивает срок службы таких фильтров, а качество очистки воды при этом возрастает на порядок. Помимо обеззараживающих свойств, наночастицы серебра обладают также высокой электропроводностью, что позволяет создавать различные проводящие клеи Проводящий клей способен быть использован, например, в микроэлектронике для соединения мельчайших электронных деталей.

    Таким образом, крошечные, незаметные, экологически чистые серебряные наночастицы могут применяться везде, где необходимо обеспечить чистоту и гигиену: от косметических средств до обеззараживания хирургических инструментов или помещений.
    1.1Основные методы получения наночастиц серебра
    К основным методам получения наночастиц серебра относятся методы: химического восстановления в растворах, лазерного излучения, фотолиза, и радиационно-химическое восстановление ионов металлов в водных растворах.

    Получение наночастиц серебра методом химического восстановления в растворах.

    Наночастицы серебра в водных растворах получают путем восстановления ионов серебра с помощью глюкозы, аскорбиновой кислоты, гидразина, боргидрида натрия и других восстановителей. Реакцию восстановления проводят в различных условиях. Восстановление глюкозой проводят при нагревании до 600С. Для увеличения скорости протекания реакции используют гидроксид натрия.

    Полученные частицы исследуют различными способами: методом рентгеновской дифракции (XRD), методом трансмиссионной электронной микроскопии (TEM), а также проводились исследования на спектрофотометре. Исследования показали, что в ходе восстановления в водных растворах были получены частицы размером 10 – 20нм, λ = 1.5418 A°

    К способам управления размерами наночастиц, применяемым в научной практике, относятся: использование полимерных матриц, позволяющих управлять размерами нанокластеров, полимерной защиты; физические методы управления размерами (обработка ультразвуком, облучение рентгеновским излучением и использование токов высокой чистоты). Изменение размера нанокластеров металлов добиваются также варьированием природы восстановителя [3].

    Так, использование боргидрида натрия при восстановлении позволяет в большинстве случаев получить наночастицы серебра с узким распределением по размерам в пределах 2-8 нм. Восстановление более мягким восстановителем, таким как гидразин, приводит к образованию более крупных наночастиц металлов с размерами 15-30 нм.

    При варьировании условий восстановления возможно получение практически монодисперсных наночастиц. Строение и размер продукта в большой степени зависит от условий реакции, таких как температура и концентрация нитрата серебра.

    Например, когда температура понижается до 120 или увеличивается до 190, в полученном продукте доминируют наночастицы с нерегулярной структурой (формой). Начальная концентрация нитрата серебра должна быть не больше 0.1М, в противном случае будет выпадать в виде осадка металлическое серебро. Наночастицы серебра с различными размерами могут быть получены в результате увеличения времени проведения реакции. Для исследования влияния рН на устойчивость водных коллоидных растворов, раствор нитрата серебра был предварительно обработан и его значение рН установлено по растворам NaOH и HCl. Процесс восстановления серебра шел замедленно в сильнокислых (рН 1.5) и в основных (рН 12.5) условиях. Коллоидный раствор в щелочной среде сохраняет устойчивость в течении больше, чем 2 недели без образования осадка. В то время как в кислотных условиях подобная стабильность не наблюдается, образовавшиеся агрегаты сохраняются лишь в течение 5 дней при рН 1.5.Также известны способы получения наночастиц серебра в неводных средах. Наночастицы серебра с фиксированным размером были синтезированы с помощью модифицированного высокомолекулярного процесса, который предполагает восстановление нитрата серебра с этиленгликолем в присутствии стабилизаторов, таких как поливинилпирролидон [4]. Несмотря на то, что принцип селективности для этих систем еще не полностью изучен, предполагают, что селективная адсорбция ПВП на различных кристаллографических плоскостях серебра определяет морфологию продукта. Оптические измерения коллоидных наночастиц серебра в этаноле показывают единственный максимум при длине волны 395нм, который связан с поверхностным плазменным резонансом. Это и соответствует сферическим наночастицам серебра размером 5-8нм.

    Наблюдался процесс разрушения наночастицы при прохождении через энергетический барьер: должно накопиться необходимое для разрушения наночастицы количество энергии и, одновременно, проникнуть в запрещенную энергетическую зону и индуцировать многофотонный процесс.
    Получение наночастиц серебра методом фотолиза
    Процесс фотолиза, с помощью лазерного возбуждения, также может быть использован для получения наночастиц серебра в коллоидных растворах. Камат в своей работе предполагал, что в процессе фотолиза наночастицы серебра теряют электроны, образуя переходное состояние, которое предшествует окончательному разделению больших частиц.

    Таками считал, что уменьшение размера частиц наблюдается после облучения нановторичными Nd:YAG лазерными импульсами. Это объясняется частичным нагревом, плавлением и испарением поверхностного слоя. Моханти предполагал, что лазерное облучение разбивает наночастицы серебра на мельчайшие фрагменты, которые снова образуют частицы новых размеров. Таким образом, основным способом контроля размера образующихся наночастиц является облучение.
    Получение наночастиц серебра с помощью лазерного излучения

    В последние несколько лет для получения коллоидных частиц металлов использовалось лазерное облучение. Для элементов, в первых работах Мафуна [5], было показано, что получение наночастиц с помощью лазера, может быть выполнено в растворах, эта возможность используется металлическими коллоидными частицами, без учета ионов в конце процесса образования наночастиц. Изучается возможность расширения этого процесса для большего числа различных растворителей отличных от воды, что было представлено в работах Амондола [6], который предложил способ контролирования металлических кластерных соединений за счет переизлучения, мониторинга результатов с помощью исследования оптических свойств. Совсем недавно исследовалось прямое влияние лазерного излечения на золото-серебряную коллоидную смесь, что дало новые способы получения сплавов наночастиц. Контроль размера, формы и структуры металлических наночастиц технологически важны из-за сильных корреляций между этими параметрами и оптическими, электрическими и кристаллическими свойствами.

    Радиационно-химическое восстановление ионов металлов в водных растворах. Образование золей металла.

    Радиационно-химическое восстановление (или окисление) ионов металлов в водных растворах осуществляется ионными и радикальными частицами, которые генерируются под действием ионизирующего излучения. Атомы и ионы в необычных и неустойчивых состояниях окисления, образующиеся на начальном этапе восстановления ионов металлов в водном растворе, являются источником формирования наночастиц.

    Радиационно-химическое восстановление многих ионов металлов в водных растворах в присутствии стабилизаторов приводит к образованию золей металла. Этот способ получения металлических наночастиц имеет ряд несомненных преимуществ, что обеспечило его достаточно широкое применение. К числу достоинств можно отнести, по крайней мере, следующие. Во-первых, вводимые в исходный раствор добавки не загрязняют образующиеся металлические золи, что неизбежно при использовании NaBH4 и других восстановителей.

    Во-вторых, при облучении радикалы-восстановители генерируются равномерно по объему раствора, что позволяет избежать локальных пересыщений, создаваемых при обычном проведении восстановительной реакции.

    В-третьих, простота проведения эксперимента: реакционный сосуд с вакуумированным раствором помещают на источник излучения, восстановительный процесс заканчивается после удаления раствора от источника излучения. В-четвертых, приготовленные растворы, содержащие в необходимой концентрации органические соединения, практически прозрачны даже в глубоком ультрафиолетовом свете, что позволяет успешно применять для исследования золей наиболее информативный метод электронной спектроскопии.

    Радиационно-химический метод полезно дополняет другие приемы получения металлических наночастиц (фотохимические, электрохимические, сонохимические и др.); использование для этих целей разнообразных восстановителей и стабилизаторов; восстановление в обратных мицеллах и многие другие.
    1.2 Свойства наночастиц серебра.
    Свойства коллоидного раствора, в том числе и наночастиц серебра, определяются возможностью коагуляции и перекресталлизации, т. е. агрегативной устойчивостью, а также седиментационной устойчивостью и возможностью их окисления кислородом воздуха. Анализ литературных данных показал, что для описания устойчивости нанодисперсии серебра во времени могут быть использованы несколько методов. Метод визуального наблюдения за системой может дать предварительные и общие закономерности относительной устойчивости исследуемой дисперсии. Может быть зафиксировано изменения окраски системы и/или образования осадка в ней. Для наночастиц серебря цвет систем от красного (желто-коричневого) меняется до серого и даже черного. Визуальный метод наблюдения может сыграть определяющую роль при исследовании седиментационной устойчивости. Было найдено, что при радиационно-химическом восстановлении ионов Ag+ в присутствии наночастиц гетерополисоединений в оптическом спектре возникают полоса золя металла с максимумом при 392 нм и полоса при 650 нм, обусловленная продуктом восстановления («синь»). Напуск воздуха приводит к окислению «сини», интенсивность полосы наночастиц серебра при этом существенно уменьшается и смещается в длинноволновую область (λмакс = 410 нм). Повторное γ-облучение раствора восстанавливает предшествующий спектр поглощения. Указанную процедуру «окисления-восстановления» можно провести несколько раз, при этом достигаются те же оптические эффекты. Таким образом, восстановление гетерополисоединения, составляющего стабилизирующий слой наночастицы серебра, обеспечивает повышение электронной плотности на металлическом ядре, что вызывает увеличение интенсивности полосы поглощения и ее «синее» смещение. Соответственно, окисление приводит к обратному эффекту. Анализируя спектры поглощения, можно предположить, что появление дополнительной полосы поглощения в длинноволновой части спектра говорит о возможной коагуляции и перекристаллизации, происходящих в системе. Агрегативную устойчивость можно охарактеризовать при помощи метода электронной микроскопии. Он позволяет получить распределение частиц по размерам и формам, а также дает представление о расположение наночастиц в пространстве (несвязанные, коагулированные). Согласно теории Ми.Друде (Mie.Drude) положение максимума полосы поглощения поверхностных плазмонов в металле определяется по уравнению:

    λ2макс = (2πc)2m(ε0 + 2n)/4πNе e2 (1)

    где c - скорость света; m - эффективная масса электрона; e - заряд электрона; ε0 – диэлектрическая проницаемость металла; n - показатель преломления среды; Ne - плотность свободных электронов в металле.

    Рассеяние света мелкими частицами обусловливает широкий класс явлений, которые можно описать на основе теории дифракции света на диэлектрических частицах. Многие характерные особенности рассеяния света частицами удаётся проследить в рамках строгой теории, разработанной для сферических частиц английским учёным А. Лявом (1889) и немецким учёным Г. Ми (1908, теория Ми). Когда радиус шара r много меньше длины волны света ln в его веществе, рассеяние света на нём аналогично нерезонансному рассеянию атомом. Сечение (и интенсивность) рассеяния в этом случае сильно зависит от r и от разности диэлектрических проницаемостей e и e0 вещества шара и окружающей среды: s ln—4r6(e - e0) (Рэлей, 1871). С увеличением r до r ln и более (при условии e > 1) в индикатрисе рассеяния появляются резкие максимумы и минимумы — вблизи так называемых резонансов Ми (2r = mln, m = 1,2, 3) сечения сильно возрастают и становятся равными 6pr2, рассеяние вперёд усиливается, назад — ослабевает; зависимость поляризации света от угла рассеяния значительно усложняется. Рассеяние света большими частицами (r >> ln) рассматривают на основе законов геометрической оптики с учётом интерференции лучей, отражённых и преломленных на поверхностях частиц. Важная особенность этого случая — периодический (по углу) характер индикатрисы рассеяния и периодическая зависимость сечения от параметра r/ln. Рассеяние на крупных частицах обусловливает ореолы, радуги, гало и др. явления, происходящие в аэрозолях, туманах и пр. Рассеяние средами, состоящими из большого числа частиц, существенно отличается от рассеяния отдельными частицами. Это связано, во-первых, с интерференцией волн, рассеянных отдельными частицами, между собой и с падающей волной. Во-вторых, во многих случаях важны эффекты многократного рассеяния (переизлучения), когда свет, рассеянный одной частицей, вновь рассеивается другими. В -третьих взаимодействие частиц друг с другом не позволяет считать их движения независимыми.


    1.3 Методы исследования наночастиц
    Для описания устойчивости нанодисперсии серебра во времени могут быть использованы несколько методов.

    Метод визуального наблюдения за системой может дать предварительные и общие закономерности относительно исследуемой дисперсии. К надежным инструментальным методам относится оптический, основанный на измерении спектра поглощения. Анализируя спектры поглощения, можно предположить о возможности коагуляции и перекристаллизации при появлении дополнительной полосы поглощения на зависимости оптической плотности от длины волны или нового максимума в длинноволновой части спектра.



    Рисунок 1 - УФ-спектр наночастиц серебра в растворе.
    Также для характеристики свойств синтезированных нанодисперсных систем серебра используется просвечивающая электронная микроскопия. Компьютерный анализ полученных изображений наночастиц дал возможность получить распределение частиц по размерам при различных условиях проведения синтеза. Атомно-абсорбционная спектроскопия позволила определить концентрацию ионов серебра в системах.

    Оптические методы анализа

    Оптические методы измерения концентрации относятся к методам, основанным на эффектах взаимодействия вещества с электромагнитным излучением оптического диапазона шкалы электромагнитных волн от1 мм до 10 нм. Результатом такого взаимодействия могут быть следующие две группы эффектов:

    отражение; преломление; рассеяние света; изменение плоскости поляризации света оптически активными молекулами;

    поглощение света атомами или молекулами, причем часть энергии света может пропускаться веществом (пропускание света) без поглощения.

    Эти группы эффектов обусловлены различными свойствами электромагнитного излучения:

    1. Волновые свойства, по которым электромагнитное излучение – это волна с характеристиками длины волны, частоты, волнового числа, мощности излучения, интенсивности излучения.

    2. Корпускулярные свойства, по которым электромагнитное излучение – это частица (квант) со своей энергией.

    Оптический диапазон шкалы электромагнитных волн подразделяют по эффектам взаимодействий на области, следующим образом:

    Дальняя инфракрасная область – 50 – 1000 мкм.

    Средняя инфракрасная область – 2,5 – 50 мкм.

    Ближняя инфракрасная область – 0,75 – 2,5 мкм.

    Видимая область – 750 – 400 нм.

    Ультрафиолетовая область – 200 – 400 нм.

    Дальняя ультрафиолетовая область – 10 – 200 нм.

    Классификация оптических методов анализа по измеряемым свойствам приведена в таблице 1.
      1   2   3


    написать администратору сайта