Главная страница

эколог. Калининградский государственный университет


Скачать 1.1 Mb.
НазваниеКалининградский государственный университет
Дата13.05.2021
Размер1.1 Mb.
Формат файлаpdf
Имя файлаэколог.pdf
ТипУчебное пособие
#204759
страница4 из 11
1   2   3   4   5   6   7   8   9   10   11
4.1. Круговорот углерода Большой (геологический) круговорот углерода можно представить в виде схемы (рис. 4.1). Биотический круговорот углерода является составной частью большого круговорота в связи с жизнедеятельностью организмов. Углекислота, или СО, находящаяся в атмосфере (23,5·10 11
т) или в растворенном состоянии вводе, служит сырьем для фотосинтеза растений и переработки углерода в органическое вещество живых существ, те. в процессе фотосинтеза превращается в сахара, затем преобразуется в протеины, липиды и т.д. Эти вещества служат углеводным питанием животными наземным растениям, те. поступают в распоряжение консументов разных уровней, а далее - редуцентов. Придыхании организмов СО возвращается в атмосферу. Определенная часть углерода накапливается в виде мертвой органики и переходит в ископаемое состояние. Когда наступает смерть, то сапрофаги и биореду- центы двух типов разлагают и минерализуют трупы, образуя цепи питания, в конце которых углерод нередко поступает в круговорот в форме углекислоты (почвенное дыхание.

Животные-сапрофаги и сапрофатические микроорганизмы, обитающие в почве, превращают накопившиеся в ней остатки в новое образование органической материи, более или менее мощный слой коричневой или черной массы - гумус. Иногда из-за недостатка воздуха или высокой кислотности цепь бывает неполной или короткой, те. органические остатки накапливаются в виде торфа, образуя торфяные болота. В некоторых болотах слой торфа достигает мощности 20 ми более. Здесь и приостанавливается природный (биологический) круговорот. Залежи каменного угля или торфа - продукт процессов фотосинтеза растений прошлых геологических эпох. Однако солнечную энергию, аккумулированную в ископаемом топливе, человек интенсивно высвобождает при сжигании топлива, при этом СО
2
поступает в атмосферу. Основная масса углерода биосферы аккумулирована в карбонатных отложениях дна океана (известняки и кораллы 1,3·10 16
т, кристаллических породах - 1,0·10 16
т. В каменном угле и нефти - 3,4·10 15
т. Именно этот углерод принимает участие в медленном геологическом круговороте. Жизнь на Земле и газовый баланс атмосферы поддерживается количеством углерода, содержащегося в растительных (5·10 11
т) и животных (5·10 9
т) тканях. Однако в настоящее время человек интенсивно замыкает на себя круговорот веществ, в том числе и углерода. Так, например, подсчитано, что суммарная биомасса всех домашних животных уже превышает биомассу всех диких наземных животных. Площади культурных растений приближаются к площади естественных био- геоценозов, и многие культурные растения экосистемы по своей продуктивности значительно превосходят природные. С другой стороны, поступление диоксида углерода в атмосферу в результате сжигания энергоносителей ведет к глобальным нарушениям в биосфере - нарушению теплового баланса. За последнее столетие содержание СО увеличилось на 10%, причем основной прирост произошел в последние десятилетия. В атмосфере задерживается около половины всего антропогенного СО, остальное поглощается Мировым океаном. Считается, что экосистемы (наземные) ассимилируют около 12% СО, общее время его переноса -
8 лет. В пособии НМ. Кузьменко, Е.А. Стрельцова и АИ. Кумачева Экология на уроках химии отмечается, что еще в 1962 году климатологи метеоролог МИ. Будыко предостерегал, что сжигание огромного количества топлива неизбежно приведет к возрастанию в атмосфере СО. Так, в 1956 г. содержание СО было 0,028%, в 1985 гав г. составило

0,035%. Следовательно, за 33 года содержание СО возросло на 25% от первоначальной величины. По прогнозам, к середине XXI века содержание СО в атмосфере удвоится. Накопление СО в атмосфере во всем мире связывается сейчас с так называемым парниковым эффектом (этому способствует также накопление
СН
4
, СО. Диоксид углерода не поглощает видимую и ближнюю
УФ-области солнечной радиации, ас другой стороны, ИК-излучение Земли поглощается СО в атмосфере, не пропускается в космос. Задерживание тепла вблизи поверхности Земли - процесс очень важный для поддержания жизни на Земле, иначе средняя температура была бы на
33
о
С ниже существующей. Но перспективы быстрого повышения t о
С Земли очень опасны, так как приведут к повышению уровня Мирового океана. Многие климатологии рассматривают длительную жару 1988 г. в Северном полушарии последствиями парникового эффекта.
4.2. Круговорот азота Несмотря на величайшую сложность, этот круговорот осуществляется быстро и беспрепятственно. Воздух, содержащий 78% азота, одновременно служит и огромным вместилищем и предохранительным клапаном системы. Он беспрерывно ив разных формах питает круговорот азота. Цикл азота состоит в следующем. Его главная роль заключается в том, что он входит в состав жизненно важных структур организма - аминокислот белка, а также нуклеиновых кислот. В живых организмах содержится примерно 3% всего активного фонда азота. Растения потребляют примерно
1% азота время его круговорота составляет 100 лет. От растений-продуцентов азотосодержащие соединения переходят к консументам, от которых после отщепления аминов от органических соединений азот выделяется в виде аммиака или мочевины, а мочевина затем также превращается в аммиак (вследствие гидролиза. Промышленное использование Горение Дыхание Торф, уголь, нефть Зеленые растения Свободный СО в воздухе
СО
2
вводе океанов дыхание, гниение дыхание, гниение Живые организмы Фотосинтез
Рис. 4.1. Трансформация и использование СО в природе
В дальнейшем в процессах окисления азота аммиака (нитрификации) образуются нитраты, способные ассимилироваться корнями растений. Часть нитритов и нитратов в процессе денитрификации восстанавливается до молекулярного азота, поступающего в атмосферу. Все эти химические превращения возможны в результате жизнедеятельности почвенных микроорганизмов. Эти удивительные бактерии - фиксаторы азота - способны использовать энергию своего дыхания для прямого усвоения атмосферного азота и синтезирования протеидов. Таким путем в почву ежегодно вносится около 25 кг азота нага. Но самые эффективные бактерии живут в симбиозе с бобовыми растениями в клубеньках, развивающихся на корнях растений. В присутствии молибдена, который служит катализатором, и особой формы гемоглобина уникальный случай у растений) эти бактерии (Rhizobium) ассимилируют громадные количества азота. Образующийся (связанный) азот постоянно диффундирует в ризосфере (часть почвы, когда клубеньки распадаются. Но еще азот поступает в наземную часть растений. Благодаря этому бобовые исключительно богаты протеинами и очень питательны для травоядных. Годовой запас, таким образом накапливаемый в культурах клевера и люцерны, составляет 150-140 кг/га. Помимо бобовых такие бактерии живут на листьях растений (в тропиках) из семейства Rublaceae, а также актиномицеты - на корнях ольхи, фиксирующие азот. Вводной среде - это синие водоросли. Итак, азот из разнообразных источников поступает к корням в виде нитратов, абсорбируется корнями и трансформируется в листья для синтеза протеинов. Протеины служат основой азотного питания животных, а также пищей некоторых бактерий (паразитов. Организмы, разлагающие органическое вещество после смерти, переводят азот из органических соединений в минеральные. Каждая группа биоредуцентов специализируется на каком-либо одном звене этого процесса. Цепь заканчивается деятельностью аминообразующих организмов, образующих аммиак (Н, который далее входит в цикл нитрификации Nitrosomonas окисляет его до нитритов, а Nitrobarter окисляет нитриты в нитраты. С другой стороны, бактерии-денитрификаторы разлагают нитраты, освобождают, который улетучивается в атмосферу. Но этот процесс не
очень опасен, так как разлагает примерно 20% общего азота, и то лишь на почвах, очень удобренных навозом (примерно 50-60 кг азота 1 га. Круговорот азота в настоящее время подвергается сильному воздействию со стороны человека. С одной стороны, массовое производство азотных удобрений и их использование приводит к избыточному накоплению нитратов. Азот, поступающий на поля в виде удобрений, теряется из-за отчуждения урожая, выщелачивания и денитрификации. С другой стороны, при снижении скорости превращения аммиака в нитраты аммонийные удобрения накапливаются в почве. Возможно подавление деятельности микроорганизмов в результате загрязнения почвы отходами промышленности. Однако эти процессы носят локальный характер. Гораздо большее значение имеет поступление оксидов азота в атмосферу при сжигании топлива на ТЭЦ, транспорте, заводах (лисий хвост. В промышленных районах их концентрация в воздухе становится очень опасной. Под воздействием излучения происходят реакции органики (углеводородов) с оксидами азота с образованием высокотоксичных и канцерогенных соединений.
4.3. Круговорот фосфора Фосфор совершает круговорот в наземных экосистемах в качестве важной и необходимой составной части цитоплазмы биоредуценты минерали- зуют органические соединения фосфора из отмерших организмов в фосфаты, которые вновь потребляют корни растений. Громадные запасы фосфора, накопившиеся запрошлые геологические эпохи, содержат горные породы в процессе разрушения эти породы отдают фосфаты наземным экосистемам однако значительные количества фосфатов оказываются вовлеченными в круговорот воды, когда происходит их выщелачивание водой и вынос в моря и океаны. Здесь они обогащают соленые воды, питают фито- планктоны и связанные с ним пищевые цепи. Затем вместе с отмершими остатками фосфаты погружаются в океанические глубины, часть теряется в глубинных отложениях, часть возвращается на землю с помощью морских птиц. Здесь имеется ввиду гуано, огромные залежи которого на побережье Перу указывают на то, что некогда морские птицы играли бульшую роль в его накоплении, чем теперь. Возврат фосфора возможен еще и благодаря рыболовству. Рыбу во всем мире используют в качестве удобрения (рыбная мука, в том числе под посевы риса. Считают, что каждый год таким образом возвращается в круговорот 60 тыс. тонн фосфора, что далеко не компенсирует расход тех 2 млн. тонн фосфатов, которые ежегодно добываются из залежей и быстро выщелачиваются при использовании в качестве удобрений.
Рано или поздно, это становится тревожными опасным. Фосфор - это слабое звено в жизненной цепи, обеспечивающей существование человека. Органический азот животных, растений (NH
2
) Аммиак (NH
3
) Оксид азота Нитриты (NO
2
-
) Свободный азот (Нитраты (NO
3
) Фиксация азота клубеньковыми бактериями
Аммонификация
Нитрификация
Нитрификация
Денитрификация
Ион аммония
(NH
4
+
)
Мочевина
[CO(NH
2
)
2
] Продукция и ассимиляция растениями и животными Рис. 4.2. Круговорот азота
4.4. Круговорот биогенных элементов Нам известно, что углерод, азот, водород, кислород, фосфор, сера формируют живые организмы. Однако эти организмы не смогут жить без достаточного количества многих других элементов - катионов металлов. Среди них калий, кальций, магний (иногда натрий) относятся к группе макроэлементов, так как они необходимы в больших количествах (выражающихся в сотых долях сухого вещества однако такие элементы, как железо, бор, цинк, медь, марганец, молибден, кобальт, анион хлора, относятся к микроэлементами нужны лишь в малых количествах (выражающихся в миллионных долях сухого вещества. На суше главным источником биогенных элементов (катионов) служит почва, которая получает их в процессе разрушения материнских пород. Катионы абсорбируются корнями, распределяются различными органами растений, накапливаются в листве, те. входят в корм растительноядных потребителей последующих порядков вцепи питания.
Минерализация погибших организмов возвращает биогенные катионы в почву, создается впечатление, что цикл способен продолжаться беспрерывно. Однако почва выщелачивается дождями, дождевые воды переносят катионы в систему подземного стока, а также ив поверхностный сток в реки, моря, иногда в значительных количествах. Выщелачивание - автокаталитический процесс чем больше оно прогрессирует, тем больше деградируют почвенные коллоиды. Положение становится особенно тяжелым в тропических местностях ливневые дожди, низкая абсорбируемость почвенного комплекса (малое количество гумуса, истощение почв монокультурами сахарного тростника, кофе, какао, кукурузы, арахиса. Когда вырубаются или выжигаются леса под сельское хозяйство, то минерализованный таким путем запас биогенных веществ быстро выщелачивается дождями и почва утрачивает свое плодородие. Если на ней временно прекратить посевы, то она вновь может дать жизнь лесу, но уже вторичному, с менее ценой биомассой, чему первоначального сообщества. После повторения подобных операций почва будет покрываться все более и более скудной растительностью с уменьшающейся продукцией биомассы. Сначала образуется саванна, затем степь, наконец, пустыня. Значит, круговорот минеральных катионов сопровождает циклы углерода и азота. В умеренных широтах последствия выщелачивания не так резки, но все- таки в результате вырубок (сплошных под корень, при корчевке пней и снятия дерна разрушается гумус - ресурс питательных веществ. Следовательно, нарушается круговорот, его полнота переход к пустоши или лугу, со скудной растительностью и меньшим запасом биомассы. Растения (нуклеиновые кислоты, мембраны, системы переноса энерги
Ассимиляция синтез протоплазмы распад ассимиляция экскреция
Фосфаты
Бактериальное преобразование фосфат редуцирующие бактерии)
Морские осадки
Животные (кости, зубы, нуклеиновые кислоты)
Бактериальные преобразования
Органический фосфор растительного детрита
Растворенные фосфат-ионы РО 3-
) Рис. 4.3. Упрощенная схема круговорота фосфора
Истощение почвы возможно не только вследствие снятия растительного покрова, но и через сельскохозяйственные культуры. Есть такие культуры, как свекла, картофель, масличные культуры, уносящие ежегодно от
300 до 700 кг минеральных веществ нага. Таблица 4.1 Ежегодный вынос из почвы веществ (кг/га) при средних урожаях Культура Элемент
N Р К
Са Пшеница
70 30 50

30 Картофель
90 40 160 76 Люцерна
- - -
242 Таблица 4.2 Вынос веществ (кг/га) при вырубке лесов летнего возраста Растительность Элемент
Са КР Сосновый лес
424 168 38 Хвойный лес
8980 466 74 Лиственный лес
1930 483 106 Культуры овес, травы, картофель, репа 7400 1060 Если вырубка и вывоз из леса осуществляется очищенных деревьев, то обеднение не столь сильное, ас корой выносится много кальция. Интересна диаграмма распределения элементов в лесах летнего возраста (в кг/га). На рисунке видно, что кальция содержится в 4 раза больше в лиственном лесу, чем в сосновом. Лиственный лес
Са: 1283 КР Хвойный лес
Са: 676 КР Сосновый лес
Са: 328 КР. Антропогенный круговорот вещества. Ресурсный цикл Человек интенсивно трансформирует процессы круговорота всех химических элементов не только на локальном, но и биосферном уровне. Человечество- это часть биосферы (сего производством. Принципиальных различий в утилизации природных ресурсов между человеком и другими организмами нет сточки зрения экологии различия заключаются лишь в масштабах. Тот факт, что человек научился утилизировать природные ресурсы, создавая для этого специальные средства, сути дела не меняет. Сколь бы ни были масштабными процессы антропогенной трансформации вещества, они осуществляются в рамках глобальных биогеохимических циклов. Человек не в силах радикально изменить эти циклы. Самое большее, что он может, - это изменить баланс вещества на определенных этапах глобальных циклов или на определенных территориях. Человек находит и добывает природные ресурсы, перевозит их к местам переработки, производит из них энергию, какую-либо продукцию и предметы, которые в итоге поступают в пользование в виде средств производства или изделий, сооружений и т.д., те. человек вовлекает природные ресурсы (вещества) в ресурсный цикл. Под ресурсным циклом понимают совокупность превращений и перемещений определенного вещества или групп веществ на всех этапах использования его человеком (выявление, извлечение из природной среды, переработку, использование, возвращение в природу. Но если природные циклы веществ замкнутые, то ресурсный цикл как круговорот практически незамкнут, те. использованные вещества не возвращаются в места их изъятия. На каждом этапе ресурсного цикла неизбежны потери. При добыче часть сырья остается в местах залегания, а в отвалы идет так называемая пустая порода, на извлечение которой тратится энергия. Значительная доля добытого ископаемого теряется при транспортировке к заводами фабрикам при перегрузке, переработке. Если ресурс используется как топливо, то при его сгорании образуются шлаки, идущие в отвалы, оксиды, летящие в атмосферу, и т.д. Если же нефть, уголь перерабатываются промышленностью, то неизбежно образование побочных твердых, жидких, газообразных продуктов, как технологических отходов, формирующих так называемые хвостовые выбросы, которые наносят вред экосистемам, нарушают качество среды, отрицательно влияют на здоровье людей. Таким образом, получается парадоксальная ситуация загрязнение среды дают природные ресурсы На их добычу, перевозку затрачиваются огромные средства, энергия, время, но они же в конечном счете ухудшают качество окружающей среды. В связи сданной ситуацией возник афоризм
загрязнение среды - это природные ресурсы, оказавшиеся не на своем месте. Но при добыче полезных ископаемых и переработке сырья образуется большое количество отходов. Академик Прянишников пишет, что количество отходов растет, как и добыча сырья, по экспоненциальному закону и человечество все больше и больше работает на отходы. Так, на каждую тонну производимого калийного удобрения образуется от трех до четырех тонн галитовых отходов, в основном содержащих хлорид натрия. Крупнотоннажным отходом производства фосфорных удобрений является фосфо- гипс, которого при переработке апатитового концентрата получается 4,25 тонна при переработке фосфоритов Каратау - 5,6 тонны на каждую тонну экстракционной фосфорной кислоты. Большое количество отходов образуется и при обогащении фосфатного сырья. При обогащении медных руд в отходы идет флотационный серный колчедан. Он используется для производства серной кислоты. Однако при обжиге серного колчедана образуется колчеданный огарок (

0,73-0,75 т на 1 т пирита. Ежегодно его скапливается более 5 млн. тонн. Огарок используется далеко не полностью, хотя содержит в основном железо, а также цветные и драгоценные металлы. Просачиваясь через отвалы, поверхностные воды в результате выщелачивания сульфидов увеличивают свою кислотность и обогащаются железом, медью, никелем, кальцием, сульфатами и другими веществами. Эти воды загрязняют реки, водоемы и подземные воды. Высокая концентрация тяжелых металлов может оказаться токсичной для растений, подавляя их рост. Тепловые элекростанции дают десятки миллионов тонн пылевидной золы и кусковых шлаков в год. Отвалы крупной тепловой электростанции занимают сотни гектаров ценных земель, но эти отходы представляют сырье для производства строительных материалов. Зола может быть сырьем для извлечения ряда металлов железа, алюминия. Золу можно использовать в производстве наполнителей бетона, силикатного кирпича, шлакоме- таллов и др. Мы убедились ранее, какие сложные закономерности сопровождают антропогенный круговорот вещества при использовании ресурсов геобио- цинозов (те. экологических систем. Так, если вырубается древостой, то вся экосистема может прекратить свое существование просто потому, что изымается и отчуждается основная масса запасенной энергии и вещества, которая должна была передаваться наследующие трофические уровни. На месте уничтоженной экосистемы может возникнуть новая, но значительно менее продуктивная. Таким образом, рассеивание вещества и энергии резко опережает ее восстановление, и естественный круговорот прекращается. Чтобы не допустить этого, человек вынужден брать на себя восстановление экосистемы высевание семян,
внесение органо-минеральных удобрений, обеспечение растений водой и т.п.
1   2   3   4   5   6   7   8   9   10   11


написать администратору сайта