Главная страница
Навигация по странице:

  • Генетический груз популяций и методы его оценки.

  • 3. Строение и синтез нуклеиновых кислот. Генетический контроль биосинтеза белка в клетках. Генетический код и его характеристика.

  • Регуляция синтеза и-РНК и белка

  • Оперон

  • 4. Ветеринарная генетика, предмет и методы исследований. Значение на современном этапе развития селекции и ветеринарии.

  • 5. Влияние инбридинга на выщепление рецессивных летальных генов

  • 6. Мозаицизм и химеризм в кариотипе животных. Связь химеризма ХХ/ХУ с фримартинизмом и другими нарушениями развития.

  • 7. Сущность явлений наследственности и изменчивости. Типы изменчивости.

  • Кариотип и его особенности у крс, овец, коз


    Скачать 359 Kb.
    НазваниеКариотип и его особенности у крс, овец, коз
    АнкорOtvety_po_genetike_001_kopia.doc
    Дата12.04.2017
    Размер359 Kb.
    Формат файлаdoc
    Имя файлаOtvety_po_genetike_001_kopia.doc
    ТипДокументы
    #4732
    страница1 из 9
      1   2   3   4   5   6   7   8   9




    1. Кариотип и его особенности у КРС, овец, коз.

    Кариотип – это определенный набор хромосом для данного вида животного. В соматических клетках хромосомы парные, набор хромосом диплоидный.

    Пары одинаковые по величине и форме хромосом – гомологичные. Гоносомы - половые хромосомы. Аутосомы – хромосомы, одинаковые у разных полов.

    Особенности: КРС – 2n=60, аутосомы акроцентрики (58), половые хромосомы мета- и субметацентрики.

    Овцы – 2n=54, аутосомы:46 – акроц., 6 – субмета- и метац., Х-хромосома – акроц., Y-хр. – мета, субметац.

    Козы – 2n=60, аутосомы акроц. (58), Х-акроц., Y – мета-, субметац.


    1. Генетический груз популяций и методы его оценки.

    Генетический груз – совокупность вредных генных и хромосомных мутаций. (По Уколову): Г.гр. – рецессивные мутации в гетерозиготном состоянии (фенотипически не видны), вызывают летальный/полулетальный эффект (смертность).

    Вызывают: - снижение жизнеспособности (отставание в росте, низкая живая масса, частые болезни)

    - проявление аномалий (мумификация – аномалия кожного покрова, его отсутствие, отсутствие перьев, деформация, закрученность; аномалии покрова желудка – язвы и т.п.; деформации строения: укорочение челюстей (прикус); полидентия, искривление/укорочение клюва

    - аномалии конечностей, периферии (укорочение, удлинение, рахитозность, многопальцевость, копытность)

    - аном. позвоночника (укорочение, удлинннение, искривление, деформация позвонков)

    - отсутствие фрагментов мозжечка (деэнцефалия), водянка головного мозга.

    [Аномалии – морфофункциональные (=морфофизиологические) отклонения, вызванные наследственным аппаратом (мутации), травмами. Они бывают морфологические, физиологические, биохимические, анатомические.]

    Методы оценки: на основании фенотипического проявления мутации (уродства, врождённые аномалии нарушения обмена), анализа типа их наследования, частоты в популяции, путём сравнения частот мертворожденных в родственных и неродственныъ подборах родительских пар; учёт хромосомных мутаций ведётся прямым цитологическим методом (основная компонента груза у КРС – робертсоновские транслокации и транслокация 1/29 хромосомы, а у свиней – реципроктные).
    3. Строение и синтез нуклеиновых кислот. Генетический контроль биосинтеза белка в клетках. Генетический код и его характеристика.

    Нуклеиновые кислоты содержатся в клетках в двух видах – в виде РНК (находится как цитоплазме так и в ядре) и ДНК (материальная основа наследственности). Нуклеиновые кислоты – макромалекулярные вещества.

    Молекула РНК представляет собой длинную цепь, состоящую из последовательно расположенных звеньев – нуклеотидов. Нуклеотид состоит из 3 компонентов – остаток фосфорной кислоты, рибоза и азотистое основание: аденин, гуанин, цитозин, урацил. Существует три вида РНК: информационная (и-РНК), транспортная (т-РНК) и рибосомная (р-РНК).

    Молекула ДНК схожа с РНК, но вместо рибозы – дезоксирибоза, а вместо урацила – тимин.

    В 1953 году Дж.Уотсон и Ф.Крик установили структуру ДНК. Она имеет двойную спираль, состоящую из двух полинуклеотидных цепей с общей осью. На каждый виток спирали приходится 10 пар нуклеотидов. Связь между цепочками осуществляется за счет водородных связей между азотистыми основаниями: А – Т – две, Г – Ц – три.

    Синтез ДНК – репликация ДНК – процесс самоудвоения ДНК. Происходит в S – период интерфазы, перед каждым удвоением хромосом и делением клетки. Сначала происходит раскручивание ДНК, затем расшивание ДНК под действием белка геликаза. ДНК-полимераза осуществляет синтез дочерней (комплиментарной ДНК). Затем идет формирование двух новых молекул ДНК, каждая из которых содержит одну материнскую цепь и одну дочернюю. В конечном итоге эти фрагменты соединяются при помощи фермента лигазы общую цепочку.

    Синтез РНК: все гены РНК делят на 3 группы – кодирует и-РНК , кодирует р-РНК, кодирует т-РНК. Синтез РНК в живой клетке проводится ферментом — РНК-полимеразой. В целом матрицей синтеза РНК может выступать как ДНК, так и другая молекула РНК. Вторичная структура молекулы матрицы расплетается с помощью хеликазной активности полимеразы, которая при движении субстрата в направлении от 3' к 5' концу молекулы синтезирует РНК в направлении 5' → 3'. Терминатор транскрипции в исходной молекуле определяет окончание синтеза. Многие молекулы РНК синтезируются в качестве молекул-предшественников, которые подвергаются «редактированию» — удалению ненужных частей с помощью РНК-белковых комплексов

    На таком гене сначала образуется незрелая р-РНК. В ней содержится: несущие информацию ставки, информация о 3 видах р-РНК и о нескольких видах т-РНК. Созревание состоит в том, что вырезаются все ставки и цепи р- и т-РНК. Основная часть генов т-РНК одиночная. Часть т-РНК генов объединяются в группы с генами р-РНК.

    Синтез белка в клетке

    Синтез белка в клетке происходит в интерфазе в период G1 в 2 этапа: транскрипция, трансляция. Транскрипция – переписывается информация с ДНК на и-РНК, обычно переписывается матричная. и-РНК строится из свободных рибонуклеатидов ядра по принципу комплиментарности матрицы. Образование эфирных связей между рибонуклеотидами способствует фермент РНК – полимераза. РНК полимераза связывается промоутером – специфическая последовательность нуклеотидов длиной 6 – 30 оснований, который стоит перед каждым геном. Начиная с промоутера, РНК полимераза расплетает ген на 2 цепи и на матричной строится РНК. Когда считывание информации на ДНК дойдёт до обратных повторов нуклеотидов, на цепи РНК образуется петля или шпилька. Она мешает продвижению РНК полимераза, поэтому синтез РНК останавливается. Созревание и-РНК происходит в ядре и называется процессинг. Затем зрелая и-РНК модифицируется: 1) на 5 ́ конце и-РНК образуется кэп или колпачок – от 50 – 200 остатков метилированного гуанина. С помощью него и-РНК прикрепляется к малой субчастице рибосомы. 2) к 3 ́ концу прикрепляется до 200 адениловых остатков. Они стабилизируют цепь и-РНК. В таком виде зрелая и-РНК направляется в цитоплазму на рибосомы и прикрепляется на малую субчастицу. Трансляция– сборка белка из аминокислот: 1) инициация – начало синтеза. т-РНК-и узнаёт триплет инициатор синтеза АУГ. Большая субчастица рибосомы соедин-ся с малой. 2) Элонгация – удлинение белковой цепи. т-РНК-и занимает п-участок рибосомы, а вторая т-РНК, антикодон которой соответствует кадону, на и-РНК переносит свою аминокислоту в а- участок рибосомы. Между аминокислотой наход-ся п- и а- участки, образуется пептидная связь. а- участок освобождается, т.к. рибосомы передвигаются по и-РНК на один шаг. В него поступает третья аминокислота – трипептид – рибосомы продвигаются на шаг. 3) терминация – остановка синтеза. Когда считывание инф-ции на и-РНК дойдёт до одного триплета терминаторов, а участок не освобождается, т.к. нет т-РНК, кот соответствует терминатору – синтез белка прекращается. С помощью трёх белков факторов терминации цепь белка и цепь и-РНК отсоединяются от рибосомы.

    Регуляция синтеза и-РНК и белка

    Процесс реализации генетической информации наз экспрессия генов(работа генов). Работа генов регулируется на уровне транскрипции и-РНК с помощью белков репрессоров и активаторов. Регуляция работы генов прокариот наз индукцией, репрессии и рассматривается на примере работы лактозного оперона. У кишечной палочки за распад лактозы отвечают 3 фермента, а за синтез этих ферментов 3 структурных гена, расположены последовательно друг друга. На этих генах образуется 1 молекула из РНК. Перед структурными генами нах. общий для них оператор, а передний промотр. Оперон – сайт, в котором молекулы белка репрессора. Промотр – несколько нуклеотидов с котор связывается РНК полимераза и начинается транскрипция. На небольшом расстоянии от оперона нах. ген. – репрессор. На нём синтезируется и-РНК, белки репрессоры есть в кл всегда. Репрессия – остановка работы оперона. Индукция – включение в работу. Когда появл вещ-во индукта (лактоза), то молекула индуктора освобождает оператор от белка репрессора, то структурные гены начинают работать. – это негативная регуляция работы генов. Существует пазитивная регуляция – сигнал усиления транскрипции – комплекс АМФ-сар, когда такой комплекс связывается с промотором транскрипция усиливается в 50 раз.
    Генетический код. Его особенности:

    1)Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

    2)Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

    3)Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся геноввирусовмитохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

    4)Однозначность (специфичность) — определённый кодон соответствует только одной 5)Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

    6)Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека 


    4. Ветеринарная генетика, предмет и методы исследований. Значение на современном этапе развития селекции и ветеринарии.

    Ветеринарная генетика – наука, изучающая наследованные аномалии и болезни с наследственным предрасположением, разрабатывающая методы диагностики, генетической профилактики и селекции животных на устойчивость к болезням.

    Задачи ветеринарной генетики:

    1. Изучение наследственных аномалий;

    2. Разработка методов выявления гетерозиготных носителей наследственных аномалий

    3. Мониторинг распространения вредных генов в популяциях и их элиминация

    4. Цитогенетический анализ животных в связи с заболеваниями

    5. Изучение генетики иммунитета

    6. Изучение генетики патогенности и вирулентности микроорганизмов, а так же взаимодействие микро- и микроорганизмов

    7. Изучение болезней с наследственным предрасположением

    8. Разработка методов раннего выявления маркеров устойчивости и восприимчивости организма у болезням, в том числе при отсутствии инфекционного фона

    9. Изучение влияния вредных экологических веществ на наследственный аппарат животных

    10. Изучение генетически детерминированных реакций животных на лекарственные препараты

    11. Создание устойчивых к болезням, с низким генетическим грузом и приспособленных к определенным условиям среды стад, линий, типов, пород. Последние две проблемы – предмет изучения селекционно-ветеринарной генетики

    12. Использование методов биотехнологии для повышения резистентности животных к болезням


    Методы генетики:

    • Гибридологический анализ – основан на использовании системы скрещивания в ряде поколений для определения характера наследования признаков и свойств.

    • Генеалогический метод – заключается в использовании родословных для изучения закономерностей наследования признаков, в том числе наследственных болезней.

    • Цитогенетический метод – служит для изучения хромосом, их репликации и функционирования, хромосомных перестроек и изменчивости числа хромосом.

    • Популяционно-статистический метод – применяется при обработке результатов скрещиваний, изучении связи между признаками, анализе генетической структуры популяций, распространении генетических аномалий в популяциях и т.д.

    • Иммуногенетический метод – включает серологические методы, иммуноэлектрофарез и др., которые используются для изучения групп крови, белков и ферментов сыворотки крови тканей. С его помощью можно установить иммунологическую несовместимость, выявить иммунодефициты, мозаицизм близнецов и т.д.

    • Онтогенетический метод – используют для анализа действия и проявления генов в онтогенезе при различных условиях среды. Для изучения явлений наследственности и изменчивости используют биохимический, физиологический и другие методы.


    Значение генетики для практики.

    Большое значение имеют теоретические исследования по проблемам генетической инженерии в селекции растений, микроорганизмов и животных, разработке более эффективных методов и средств предупреждения болезней и лечения животных. В большой степени от успешного развития генетики зависит решение проблемы пищевых ресурсов, охрана здоровья человека и животных, борьба с наследственными болезнями, охрана окружающей среды.

    ПРИМЕРЧИКИ: выведены гибриды ячменя и пшеницы, ячменя и ржи, высокомасличные сорта подсолнечника, сорт подсолнечника масло которого сходно с оливковым. Разработан метод микроклонирования винограда (новое растение из соматической клетки). Выведены штаммы кишечной палочки продуцирующие аминокислоту 1-треонин, витамин В2, штаммы бактерий продуцирующие лизин, соматотропин (гормон роста), инсулин. Микробиологически синтезируются вакцины и сыворотки.
    Методы генетики используют:

    1. Выведение линий и пород животных, устойчивых к болезням

    2. Для уточнения происхождения животных

    3. При оценке производителей по качеству потомства

    4. При цитогенетической аттестации производителей

    5. В пушном звероводстве

    6. Для изучения влияния экологически вредных веществ на наследственный аппарат животных


    5. Влияние инбридинга на выщепление рецессивных летальных генов

    Инбридинг – спаривание животных находящихся в родственных отношениях. Этот метод подбора используется в племенном животноводстве для закрепления ценных наследственных признаков того или иного животного в последующих поколениях. У родственных меду собой животных наблюдается сходство по определенным парам аллелей, которые они получили от общего предка. Это сходство больше, чем ближе степень родства.

    Каждое животное в генотипе имеет аллельные гены, как в гомозиготном, так и в гетерозиготном состоянии. При этом в гетерозиготе обычно находятся вредные мутантные рецессивные гены. При инбридинге возрастает вероятность гамет несущих мутантные гены и перехода их в гомозиготное состояние. Эта вероятность пропорциональна степени родства.

    В итоге происходит изменение генных частот, возрастает вероятность выщепления рецессивных гомозигот, что становится причиной инбредной депрессии: снижение жизнеспособности, плодовитости , рождении аномальных особей. ОДНАКО первые два фактора (снижение жизнеспособности и продуктивности) не являются фатальными, так как линия ухудшается, пока в ней накапливаются гомозиготные аллели, и когда этот процесс завершится линия становится устойчивой. И любые изменения в ней обуславливаются лишь появлением новых мутаций. НО важно помнить, что многие линии при инбридинге гибнут потому что в гомозиготное состояние переходят летальные и полулетальные гены.

    ПРИМЕРЧИКИ: Если в нашем распоряжении имеется популяция с генотипом AaBbCcDd, то путем инбридинга мы увеличим шансы на присутствие в локусе А аллелей АА или аа, в В — аллелей ВВ или ЬЪ и т. д. Если мы хотим получить помет с генотипом AABBCCDD, инбридинг поможет нам в этом, впрочем, он приведет к появлению в помете щенков и с нежелательным для нас генотипом aabbccdd.

    У кур четвертого поколения по сравнению с первым оплодотворенность яиц снизилась на 26,7%, доля полученных здоровых цыплят от оплодотворенных яиц уменьшилась на 25,5%. Снижается жизнеспособность, наблюдаются общее ослабление конституции животных, переутончение скелета, изнеженность, животные легко подвергаются различным неблагоприятным внешним воздействиям. Ухудшается развитие животных, происходит измельчение потомства. Инбридинг позволяет получать высокопродуктивных животных, все же в массе он ухудшает показатели продуктивности, особенно при тесных степенях инбридинга и длительном его применении.

    К сожалению, в некоторых случаях интенсивный инбридинг оказался невыгодным. Так, в семействе Дюшес, шортгор- нской породы крупного рогатого скота, он достиг инбредной депрессии, из-за чего матки стали бесплодными и линии не стало.

    6. Мозаицизм и химеризм в кариотипе животных. Связь химеризма ХХ/ХУ с фримартинизмом и другими нарушениями развития.

    Развитие половых признаков зависит от баланса генов, контролирующих их развитие.

    Аномалии в системе половых хромосом связаны в основном с нарушением расхождения в мейозе , а так же в результате обмена клетками разных индивидуумов.

    Мозаицизм – это присутствие в организме клеток разного генотипа, что может привести к возникновению в процессе соматического развития клеток популяций с отличающимся генотипом. Мозаицизм – это такое состояние, когда особь имеет разные клоны клеток, которые возникли в результате мутации у данной особи (например дрозофила).

    Химеризм – это наличие разных клонов клеток, которые возникли от разных организмов. Химеризм - возникает в результате обмена клетками крови между плодами при двух и более плодной беременности, в случае слияния бластоцист или зигот.

    Фримартинизм – особая форма интерсексуальности, выявляемая у КРС. Наблюдается появление бесплодных телок (в 95% случаев) в двойне с бычком. У них часто обнаруживают мужской тип экстерьера, недоразвитие матки и др. Причина – образование анастомозов между плацентарными сосудами разнополых плодов, по которым осуществляется обмен мужскими гормонами – тестестероном и эстрогенами. Так как тестестерон начинает продуцироваться раньше, то его длительное воздействие на женские половые органы приводит к их недоразвитию. Так же по этим анастомозам происходит обмен эритроцитарными антигенами и др. элементами.

    Химеризм по половым хромосомам наблюдается как в двойнях и в случаях большого количества телят разного пола.

    7. Сущность явлений наследственности и изменчивости. Типы изменчивости.

    Наследственность – свойство живых организмов обеспечивать материальную и функциональную преемственность между поколениями, а так же обуславливать специфический характер индивидуального развития в определенных условиях внешней среды.

    Изменчивость – это возникновение различий между организмами по ряду признаков и свойств.

    Виды изменчивости:
      1   2   3   4   5   6   7   8   9


    написать администратору сайта