ФТП_конспект_лекций. Конспект лекций Лекция 1 введение
Скачать 0.99 Mb.
|
Ионно-лучевое осаждение Технология ионно-лучевого осаждения (ИЛО) имеет две модификации. Первая основана на физическом распылении поверхности мишени ионным лучом инертного газа автономного ионного источника (АИИ) и осаждении распыленного материала на подложку. Создается ионный луч с помощью АИИ. Вторая модификация сводится к прямому осаждению на подложку ионного луча, сформированного АИИ из требуемого материала покрытия. Прямое осаждение пленок из АИИ можно проводить только при малых энергиях осаждаемых частиц, поскольку с увеличением энергии начинается самораспыление. Это ограничивает плотность ионного тока, а следовательно, и возможности осаждения пленок на большие площади с требуемой скоростью. Тем не менее, имеются сведения о прямом осаждении эпитаксиальных пленок Si и Ge при энергиях ионов от 10 до 200 эВ. Процессы ИЛО реализуются в вакуумных камерах с давлением не больше 10-2 Па для исключения рассеяния ионного луча на частицах остаточной атмосферы. Осаждение пленок путем распыления мишеней с помощью АИИ по сравнению с термовакуумной технологией позволяет существенно улучшить свойства пленок, так как энергия осаждающихся частиц лежит в диапазоне от единиц до десятков эВ и не снижается в процессе получения пленок, поскольку процесс происходит в высоком вакууме. Для получения пленок оксидов или нитридов ионное распыление может быть реализовано в присутствии O2 или N2. Состав и структура таких пленок изменяются в зависимости от концентрации реактивного газа и энергии осаждаемых частиц. Технология ИЛО не нашла широкого применения в производстве СБИС. Основные причины – высокие радиационные повреждения подложки, низкие скорости осаждения из-за отсутствия сильноточных АИИ и значительно меньшая гибкость в управлении свойствами осаждаемых покрытий. Лекция 16 Основы спектрофотометрии пленок Интерференция света в тонких пленках Интерференция происходит между лучами света, отраженными от верхней и нижней поверхностей пленки (рис. 1). Рис. 1. Интерференция равной толщины В отраженном свете интерферируют лучи 1 и 2, в проходящем свете – лучи 1 и 2. Для первых двух разность хода возникает при движении фронта волны на пути ABC для луча 1 и от точки D до C для луча 2. Оптическая длина пути равна (AB + BC)n, где n – показатель преломления материала пленки. Разность хода определяется из уравнения =n(AB+BC)–CD=2nhcosr, (1) или =2h(n2–sin2i)1/2. (2) Из опыта и теории известно, что при отражении света от границы среды с большим показателем преломления в среду с меньшим показателем преломления наблюдается дополнительный сдвиг (скачок) фазы, равный , чему соответствует изменение разности хода лучей 1 и 2 на половину длины волны /2; при этом максимумы будут наблюдаться в том случае, если разность хода будет равна нечетному числу полуволн: =2nhcosr=(2k+1)/2. (3) В проходящем свете максимумы будут наблюдаться при разности хода лучей, равной целому числу волн: =2nhcosr=k. (4) В отраженном свете интерференционная картина будет более контрастной, чем в проходящем, так как здесь интерферируют лучи равной интенсивности, а в минимумах – полное гашение света. От нижней поверхности, как и от верхней, отражается одинаковое количество падающего света (4–8%), а проходит около 90–85%. Поэтому в проходящем свете интерференция отраженного и прошедшего лучей различной интенсивности не дает в минимумах полного гашения. Определение параметров пленок При разработке методов расчета и контроля пленок основой служит модель идеальной пленки, аналогичной плоскопараллельной пластинке из однородного, непоглощающего вещества. Толщина ее мала по сравнению с окружающими средами. У экспериментально получаемых пленок наблюдаются заметные отклонения от простой модели. В зависимости от состояния исходного вещества и условий нанесения структура пленок может быть различной. Вещество в виде тонкой пленки может быть аморфным и кристаллическим. Кристаллическая структура может характеризоваться размером зерен и степенью их упорядоченности. Различные модификации одного и того же вещества могут иметь различные показатели преломления. Пленка обычно содержит поры, величина и количество которых зависят от метода нанесения. Вследствие этого показатель преломления вещества пленки обычно ниже, чем вещества в массе. Пористость пленки можно характеризовать «коэффициентом заполнения», который представляет собой отношение каких-либо постоянных для вещества в виде пленки и в виде массы, например отношение их плотностей, показателей преломления и др. Коэффициент заполнения пленок почти всегда меньше единицы. Экспериментально получаемые пленки в той или иной степени неоднородны, что необходимо учитывать при определении оптических постоянных, иначе это может служить причиной неправильного истолкования полученных результатов 3начительная неоднородность пленок может препятствовать применению обычных методов исследования. Все сказанное говорит о том, что совпадение теоретических и экспериментальных данных в значительной степени зависит от того, насколько близка реальная пленка к идеальной модели, лежащей в основе разрабатываемых методов. Наблюдаемые расхождения могут привести к ошибочным толкованиям, однако в ряде случаев, при внимательном рассмотрении, могут служить указанием на те особенности структуры, которые вызвали эти отклонения. Каждый метод наиболее четко отражает какую-либо сторону явления. Наиболее объективное исследование требует параллельного применения различных методов следующих отношений: n2 >< n3, n2h2=(2k+1)λ/4 или n2h2=2kλ/4 (24) Рис. 2. Спектральное отражение от поверхности подложки (n2) с однородной пленкой (n3) Экстремальное значение Rλ (25) дает возможность определить показатель преломления пленки . (26) Спектральные кривые Rλ, по которым производится расчет характеристик пленок, получают в результате спектрофотометрических измерений коэффициента отражения (рис. 2). Через RМ, обозначено минимальное значение Rλ в том случае, когда n2< n3. и через RМ – максимальное, когда n2 > n3. Экстремальное значение (27) равное отражению поверхности подложки n3 (без учета дисперсии), будет максимальным в случае n2 < n3 и минимальным, когда n2 > n3. Оптическая толщина пленки находится из соотношения: (28) где λМ соответствует положениям RМ. На оси абсцисс (рис. 2) приведены значения ряда длин волн выбранного спектрального участка: λ1, λ2, ..., λ7, где λ7 < λ1. При изменении показателя преломления пленки в зависимости от длины волны высота максимумов для разных значений λ1, λ2, ..., λ7 в случае n2 > n3 и глубина минимумов в случае n2 < n3 будут различны. Положение экстремумов также не будет строго соответствовать длинам волн. Оптические среды в основном обладают нормальным ходом дисперсии, и показатель преломления растет с уменьшением длины волны; значит, глубина минимумов RМ1 будет уменьшаться, а высота максимумов RМ3 будет возрастать в указанном направлении. Соответственно и расстояния между экстремумами уменьшатся в результате увеличения эффективной оптической толщины пленки. Определение показателя преломления пленки для различных участков спектра можно осуществить проще и точнее, если пленка достаточно толста и в исследуемом спектральном интервале имеется несколько максимумов и минимумов. Начинать измерения целесообразно в области, где дисперсия незначительна (по возможности дальше от полосы поглощения), и соседние экстремумы RМ1 и RМ3, имеют практически постоянные значения. Наличие минимумов или максимумов RМ1 или RМ3, в той области, где дисперсия значительна, дает возможность определить показатель преломления n2, соответствующий этим спектральным участкам. Смещение положения экстремумов в результате дисперсии дает возможность дополнительной проверки правильного определения зависимости n2, от длины волны, поскольку известна геометрическая толщина пленки. Анализ спектральных кривых дает возможность установить не только дисперсию вещества пленки. Значительные искажения вносят другие факторы и, в первую очередь, потери, вызванные рассеянием и поглощением в пленках. |