_Полный курс ТВН (1). Конспект лекций по дисциплине " техника высоких напряжений" специальность 10. 02. 00 Электроэнергетические системы и сети
Скачать 1.34 Mb.
|
Лекция 8. 4.4. Определение минимальных изоляционных расстояний на опорах Воздушные промежутки между проводами и заземленными частями опор должны иметь электрическую, прочность не меньше, чем гирлянды изоляторов. Если воздушная линия проходит в местности с очень низкой грозовой деятельностью и редко подвергается грозовым перенапряжениям, то импульсная прочность её изоляции не имеет значения. В таких случаях минимальные изоляционные расстояния на опорах выбираются так, чтобы их прочность не была ниже мокроразрядных напряжений гирлянд, т. е. выбираются по значению внутренних перенапряжений. На линия электропередачи, подверженных грозовым перенапряжениям, воздушные промежутки должны иметь и импульсные разрядные напряжения не ниже, чем у гирлянд изоляторов. В последнем случае для линий напряжением до 500 кВ импульсная прочность оказывает влияние на величину изоляционных расстояний. Разумеется, минимальные изоляционные расстояния определяются с учетом отклонения гирлянд от вертикального положения под действием ветра. При расчете допустимой длины воздушного промежутка провод— опора по уровню внутренних перенапряжений сначала определяется расчетное значение разрядного напряжения воздушного промежутка UРАСЧ по соотношению (23), где 0,85 — коэффициент, учитывающий возможность разброса величин разрядных напряжений; — коэффициент, учитывающий снижение разрядных напряжений при неблагоприятных атмосферных условиях (по результатам статистической обработки одновременных измерений давления, температуры и влажности воздуха в различных пунктах страны коэффициент для высоты до 1000 м над уровнем моря может быть принят равным 0,84); КДОП — допустимая кратность внутренних перенапряжений. Таблица 7 Наименьшие изоляционные расстояния по воздуху на опорах воздушных линий электропередачи
По расчетному значению разрядного напряжения UРАСЧ и по опытным кривым разрядных напряжений промежутков провод — опора определяется необходимое значение изоляционного расстояния. При выборе длины воздушного промежутка по грозовым перенапряжениям расчетное значение разрядного напряжения принимается равным 50%-ному импульсному разрядному напряжению гирлянды изоляторов. Поправка на метеорологические условия не вносится, поскольку импульсные прочности воздушных промежутков и гирлянд изоляторов в зависимости от этих условий изменяются примерно одинаково. В табл. 7 приведены минимальные изоляционные расстояния на опорах линии электропередачи. Лекция 9. 4.5. Изоляционные расстояния в распределительных устройствах При определении изоляционных расстояний по воздуху между токоведущими частями, а также от токоведущих до заземленных элементов распределительного устройства необходимо руководствоваться испытательными напряжениями, установленными для электрооборудования; при этом для РУ напряжением до 220 кВ за основу нужно принимать импульсные испытательные напряжения, а для РУ 330 и 500 кВ — испытательные напряжения промышленной, частоты. Определение необходимой длины воздушных промежутков производится по экспериментальным кривым разрядных напряжений. Поскольку ошиновка РУ весьма протяженна и вероятность про боя воздушных промежутков при такой протяженности ошиновки повышается, вводится коэффициент запаса. Изоляционные расстояния между фазами принимаются на 10% больше, чем между фазой и землей. Если ошиновка гибкая, то изоляционные расстояния должны быть увеличены с учетом возможных сближений проводов в пролете под действием ветра или изменений температуры. Таблица 8 Наименьшие изоляционные расстояния в свету от токоведущих частей до различных элементов распределительных устройств подстанций
В целях обеспечения безопасности обслуживающего персонала расстояния между фазой и землей в тех местах, где это необходимо, должны быть увеличены. Минимальные расстояния от неограждённых токоведущих частей до земли увеличиваются на 270 см, при этом расстояние от нижней кромки диэлектрической части изоляторов до земли должно быть не меньше,250 см. Минимальные расстояния между токоведущими частями и ограждениями, зданиями или сооружениями увеличиваются на 200 см. Минимальные расстояния от токоведущих частей до транспортируемого оборудования увеличиваются на 75 см. Минимальные изоляционные расстояния в свету для открытых РУ 3—500 кВ приведены в табл. 8. Контрольные вопросы
Лекция 10. 5. ВНУТРЕННЯЯ ИЗОЛЯЦИЯ 5.1.Общая характеристика внутренней изоляции Понятие внутренняя изоляция объединяет различные по устройству, габаритам, выполняемым функциям, по механическим и электрическим характеристикам изоляционные конструкции. Однако физическое содержание и закономерности процессов, от которых зависит поведение в эксплуатации внутренней изоляции, являются во многом общими. В силу этого для исследования и испытания внутренней изоляции разных высоковольтных устройств применяют одинаковые методы и измерительные средства. Внутренняя изоляция имеет ряд особенностей, существенно отличающих ее от внешней изоляции. Первая особенность состоит в том, что на электрическую прочность внутренней изоляции практически не оказывают влияние кратковременные изменения атмосферных условий, если только эти изменения не выходят за пределы допустимых. Объясняется это тем, что при кратковременных колебаниях температуры, давления и влажности окружающего воздуха свойства твердых и жидких диэлектриков, а также газов, заключенных в закрытые сосуды, изменяются незначительно или вообще не изменяются. Рис. 21 Зависимость пробивного напряжения внутренней изоляции от времени воздействия напряжения. В случае внешней изоляции любое изменение атмосферных условий означает изменение состояния основного диэлектрика, т. е. воздуха, а потому немедленно отражается на разрядном напряжении. На поведение внутренней изоляции ощутимо влияют лишь средние значения температуры и влажности окружающего воздуха за длительные промежутки времени, соизмеримые со сроком службы изоляции. Следующая особенность характерна для многих распространенных видов внутренней изоляции, включающих твердые диэлектрики, и заключается в том, что пробой последних представляет собой необратимое разрушение. Для такой изоляции невозможно самовосстановление электрической прочности до исходного уровня после отключения источника напряжения. После пробоя неизбежны длительный капитальный ремонт или замена изоляции, а иногда и всего аппарата. Поэтому внутренняя изоляция, содержащая твердые диэлектрики, должна иметь большие запасы по прочности, чем внешняя изоляция. Внутренняя изоляция любого типа (кроме чисто газовой) имеет специфическую зависимость электрической прочности от времени воздействия напряжения. Зависимость имеет пять характерных областей, показанных на рис.21. В области малых времен, исчисляемых микросекундами, пробой изоляции имеет чисто электрический характер, т. е. не связан с химическими, механическими и тепловыми процессами, и зависимость пробивного напряжения от времени аналогична вольт-секундным характеристикам газовых промежутков (область А). При временах от 10 мкс до 103—104 мкс (область В) пробивное напряжение остается приблизительно неизменным, так как время развития чисто электрического пробоя значительно меньше, а механические и химические процессы не успевают развиться. В интервале времен от 0,01 с до 1 мин (область С) происходит снижение электрической прочности, особенно заметное при наличии жидких диэлектриков, связанное, в частности, с образованием проводящих мостиков из примесей и другими медленными процессами. При временах от 1 мин до нескольких часов (область D) пробой может быть обусловлен нарушением тепловой устойчивости изоляции или процессами электрического старения. Наконец, при временах более 10 ч (область Е) происходит постепенное, длящееся иногда годами, снижение электрической прочности из-за старения изоляции, т. е. вследствие изменения ее свойств под влиянием внешних электрических, тепловых и механических воздействий. Основной диэлектрик внешней изоляции — атмосферный воздух, очевидно, не подвержен старению, он непрерывно обновляется естественным образом. Поэтому старение внешней изоляции может наблюдаться только на тех участках, где разряд развивается по поверхности твердых диэлектриков. В соответствии с приведенной на рис.21 зависимостью электрической прочности внутренней изоляции от времени воздействия напряжения, а также с учетом возможных в условиях эксплуатации электрических воздействий для внутренней изоляции различают: кратковременную электрическую прочность, которая в свою очередь подразделяется на электрическую прочность при грозовых перенапряжениях (времена воздействия от единиц до 1000 мкс) и электрическую прочность при внутренних перенапряжениях (времена воздействия от единиц миллисекунд до нескольких секунд); длительную электрическую прочность, которая соответствует временам воздействия от нескольких часов до полного срока службы (25—30 лет и более). |