Главная страница
Навигация по странице:

  • Кафедра инженерной психологии и эргономики Специальность «Информационные технологии и управлениев технических системах» КОНТРОЛЬНАЯ РАБОТА

  • Содержание : Вариант №27 Варианты контрольной работы

  • Номер варианта контр. работы Номер теор. вопросов

  • 1.Солнечная энергетика. Виды фотоэлектрических преобразователей, достоинства и недостатки солнечных батарей и коллекторов.

  • работе крайне проста и понятна. Зеркала параболической формы улавливают и собирают в пучок лучи солнца и перенапрявляют его на фотоэлектрические приёмники.

  • Энергетическая эффективность такой гибридной батареи позволяет производить 50 кВт для нужд пользователя в электроэнергии и 220 кВт тепловой энергии

  • Конторольная работа 27. Контрольная работа по курсу Безопасность жизнедеятельности человека


    Скачать 0.49 Mb.
    НазваниеКонтрольная работа по курсу Безопасность жизнедеятельности человека
    Дата06.01.2019
    Размер0.49 Mb.
    Формат файлаdocx
    Имя файлаКонторольная работа 27.docx
    ТипКонтрольная работа
    #62648
    страница1 из 3
      1   2   3

    Министерство образования республики Беларусь

    Учреждение образования

    «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

    Кафедра инженерной психологии и эргономики


    Специальность «Информационные технологии и управление
    в технических системах»
    КОНТРОЛЬНАЯ РАБОТА

    По курсу ««Безопасность жизнедеятельности человека»
    Вариант № 27

    Студент-заочник 3 курса

    Группы №______

    ФИО __ ______

    Адрес _______________

    Ул. _________________

    Тел. _________________
    Минск, 2018

    Содержание :

    Вариант №27

    1. Варианты контрольной работы



    Номер варианта контр. работы

    Номер

    теор.

    вопросов

    Типы контр. задач (вариант данных для расчета)

    27

    27, 40,73

    VI (1), XIV (2), XVII (1)

    1.Солнечная энергетика. Виды фотоэлектрических преобразователей, достоинства и недостатки солнечных батарей и коллекторов.

    2. Обучение работников знаниям по охране труда – виды инструктажей. Порядок и периодичность их проведения.

    3. Причины аварии на ЧАЭС

    Задачи.

    1.Солнечная энергетика. Виды фотоэлектрических преобразователей, достоинства и недостатки солнечных батарей и коллекторов.

    Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

    История открытия солнечной энергии

    Еще в древности люди начали задумываться о возможностях применения солнечной энергии. Согласно легенде, великий греческий ученый Архимед сжег неприятельский флот, осадивший его родной город Сиракузы, с помощью системы зажигательных зеркал. Доподлинно известно, что около 3000 лет назад султанский дворец в Турции отапливался водой, нагретой солнечной энергией. Древние жители Африки, Азии и Средиземноморья получали поваренную соль, выпаривая морскую воду. Однако больше всего людей привлекали опыты с зеркалами и увеличительными стеклами. Настоящий "солнечный бум" начался в XVIII столетии, когда наука, освобожденная от пут религиозных суеверий, пошла вперед семимильными шагами. Первые солнечные нагреватели появились во Франции. Естествоиспытатель Ж. Бюффон создал большое вогнутое зеркало, которое фокусировало в одной точке отраженные солнечные лучи. Это зеркало было способно в ясный день быстро воспламенить сухое дерево на расстоянии 68 метров. Вскоре после этого шведский ученый Н. Соссюр построил первый водонагреватель. Это был всего лишь деревянный ящик со стеклянной крышкой, однако вода, налитая в немудреное приспособление, нагревалась солнцем до 88°С. В 1774 году великий французский ученый А. Лавуазье впервые применил линзы для концентрации тепловой энергии солнца. Вскоре в Англии отшлифовали большое двояковыпуклое стекло, расплавлявшее чугун за три секунды и гранит - за минуту.

    Первые солнечные батареи, способные преобразовывать солнечную энергию в механическую, были построены опять-таки во Франции. В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор - аппарат, который при помощи зеркала фокусировал лучи на паровом котле.
    http://akbinfo.ru/wp-content/uploads/2016/11/2-11.jpg

    Инсолятор О. Мушо
    Котел приводил в действие печатную машину, печатавшую по 500 оттисков газеты в час. Через несколько лет в США построили подобный аппарат мощностью в 15 лошадиных сил.
    Подходили годы, инсоляторы использующие солнечную энергию совершенствовались, но принцип оставался прежним: солнце - вода - пар. Но вот, в 1953 году ученые Национального аэрокосмического агентства США создали настоящую солнечную батарею - устройство, непосредственно преобразующее энергию солнца в электричество.

    Еще в 70-х годах 19 века был открыт так называемый фотоэлектрический эффект - явление, связанное с освобождением электронов твердого тела или жидкости под действием электромагнитного излучения. В 30-х годах глава физиков академик А. Ф. Иоффе высказал мысль о использовании полупроводниковых фотоэлементов в солнечной энергетике. Правда, рекордный коэффициент полезного действия (КПД) тогдашних материалов не превышал 1 процента, то есть, в электричество превращалась лишь сотая часть световой энергии. После многолетних экспериментов удалось создать фотоэлементы с КПД до 10-15%. Затем американцы построили солнечные батареи современного типа. В 1959 году они были установлены на одном из первых искусственных спутников Земли, и с тех пор все космические станции оснащаются многометровыми панелями с солнечными батареями. Низкий КПД солнечных батарей можно было бы компенсировать большой площадью, например, покрыть всю пустыню Сахару фотоэлементами - и готова мощнейшая солнечная электростанция. Однако кремниевые полупроводники, на основе которых производятся солнечные батареи, очень дорого стоят. И чем выше КПД, тем дороже материалы. Вследствие этого доля солнечной энергии в сегодняшней энергетике невелика. Однако в связи с не бесконечностью ископаемого топлива, доля энергии получаемой солнечными батареями будет неминуемо возрастать. Так же росту использования солнечных батарей способствуют разработки направленные на повышение КПД и понижение их стоимости.

    Одно из главных достоинств солнечной энергии - ее экологическая чистота. Правда, соединения кремния могут наносить небольшой вред окружающей среде, однако по сравнению с последствиями сжигания природного топлива такой ущерб - капля в море.

    Полупроводниковые солнечные батареи имеют очень важное достоинство - долговечность. При том, что уход за ними не требует от персонала особенно больших знаний. Вследствие этого солнечные батареи становятся все более популярными в промышленности и быту.

    Несколько квадратных метров солнечных батарей вполне могут решить все энергетические проблемы небольшой деревушки. В странах с большим количеством солнечных дней - южной части США, Испании, Индии, Саудовской Аравии и прочих - давно уже действуют солнечные электростанции. Некоторые из них достигают довольно внушительной мощности.

    Сегодня уже разрабатываются проекты строительства солнечных электростанций за пределами атмосферы - там, где солнечные лучи не теряют своей энергии. Уловленное на земной орбите излучение предлагается переводить в другой тип энергии - микроволны - и затем уже отправлять на Землю. Все это заучит фантастично, однако современная технология позволяет осуществить такой проект в самом близком будущем.

    Способы преобразования

    Поскольку наука на сегодняшний день не имеет устройств, работающих на энергии солнца в чистом виде, её требуется преобразовать в другой тип. Для этого были созданы такие устройства, как солнечные батареи и коллектор. Батареи преобразуют солнечную энергию в электрическую. А коллектор вырабатывает тепловую энергию. Есть также модели, совмещающие эти два вида. Они называются гибридными.

    Основные способы преобразования энергии солнца:

    - фотоэлектрический;

    - гелиотермальный;

    - термовоздушный;

    - солнечные аэростатные электростанции.

    Первый способ самый распространённый. Здесь используются фотоэлектрические панели, которые под воздействием солнца вырабатывают электрическую энергию. В большинстве случаев их делают из кремния. Толщина таких панелей составляет десятые доли миллиметра. Такие панели объединяются в фотоэлектрические модули (батареи) и устанавливаются на солнце. Чаще всего их ставят на крышах домов. В принципе, ничто не мешает разместить их на земле. Нужно, только чтобы вокруг них не было крупных предметов, других зданий и деревьев, которые могут отбрасывать тень. Солнечная батареяhttp://akbinfo.ru/wp-content/uploads/2016/11/5-15.jpg

    Солнечная батарея — объединение фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

    solar panels, santorini.jpg

    Солнечный коллектор

    Солнечный коллектор — устройство для сбора тепловой энергии Солнца (гелиоустановка), переносимой видимым светом и ближним инфракрасным излучением. В отличие от солнечных батарей, производящих непосредственно электричество, солнечный коллектор производит нагрев материала-теплоносителя.https://upload.wikimedia.org/wikipedia/commons/thumb/7/7b/sokola.jpg/220px-sokola.jpg

    Типы солнечных коллекторов.

    Плоские.

    Плоский коллектор состоит из элемента, поглощающего солнечное излучение (абсорбер), прозрачного покрытия и термоизолирующего слоя. Абсорбер связан с теплопроводящей системой. Он покрывается чёрной краской либо специальным селективным покрытием (обычно чёрный никель или напыление оксида титана) для повышения эффективности. Прозрачный элемент обычно выполняется из закалённого стекла с пониженным содержанием металлов, либо особого рифлёного поликарбоната. Задняя часть панели покрыта теплоизоляционным материалом (например, полиизоцианурат). Трубки, по которым распространяется теплоноситель, изготавливаются из сшитого полиэтилена либо меди. Сама панель является воздухонепроницаемой, для чего отверстия в ней заделываются силиконовым герметиком.

    При отсутствии забора тепла (застое) плоские коллекторы способны нагреть воду до 190—210 °C.

    Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре.

    Вакуумные.

    https://upload.wikimedia.org/wikipedia/commons/thumb/c/ca/vakuumroehrenkollektor_01.jpg/220px-vakuumroehrenkollektor_01.jpg

    Вакуумный солнечный коллектор

    Возможно повышение температур теплоносителя вплоть до 250—300 °C в режиме ограничения отбора тепла. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.

    Фактически солнечная тепловая труба имеет устройство, схожее с бытовыми термосами. Только внешняя часть трубы прозрачна, а на внутренней трубке нанесено высокоселективное покрытие, улавливающее солнечную энергию. Между внешней и внутренней стеклянной трубкой находится вакуум. Именно вакуумная прослойка даёт возможность сохранить около 95 % улавливаемой тепловой энергии.

    Кроме того, в вакуумных солнечных коллекторах нашли применение тепловые трубки, выполняющие роль проводника тепла. При облучении установки солнечным светом жидкость, находящаяся в нижней части трубки, нагреваясь, превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где конденсируясь передают тепло коллектору. Использование данной схемы позволяет достичь большего КПД (по сравнению с плоскими коллекторами) при работе в условиях низких температур и слабой освещенности.

    Современные бытовые солнечные коллекторы способны нагревать воду вплоть до температуры кипения даже при отрицательной окружающей температуре.

    Устройство бытового коллектора.

    Основная статья: Солнечный водонагреватель

    Теплоноситель (вода, воздух, масло или антифриз) нагревается, циркулируя через коллектор, а затем передает тепловую энергию в бак-аккумулятор, накапливающий горячую воду для потребителя.

    В простом варианте циркуляция воды происходит естественно из-за разности температур в коллекторе. Такое решение позволяет повысить эффективность солнечной установки, поскольку КПД солнечного коллектора снижается с ростом температуры теплоносителя.

    Бывают и солнечные водонагревательные установки аккумуляционного типа, в которых отсутствует отдельный бак-аккумулятор, а нагретая вода сохраняется непосредственно в солнечном коллекторе. В этом случае установка представляет собой близкий к прямоугольной форме бак.

    Преимущества и недостатки плоских и вакуумных коллекторов.

    Вакуумные трубчатые

    Плоские высокоселективные

    Преимущества

    Преимущества

    Низкие теплопотери

    Способность очищаться от снега и инея

    Работоспособность в холодное время года до −30С

    Высокая производительность летом

    Способность генерировать высокие температуры

    Отличное соотношение цена/производительность для южных широт и тёплого климата

    Длительный период работы в течение суток

    Возможность установки под любым углом

    Удобство монтажа

    Меньшая начальная стоимость

    Низкая парусность




    Отличное соотношение цена/производительность для умеренных широт и холодного климата




    Недостатки

    Недостатки

    Неспособность к самоочистке от снега

    Высокие теплопотери

    Относительно высокая начальная стоимость проекта

    Низкая работоспособность в холодное время года

    Рабочий угол наклона не менее 20°

    Сложность монтажа, связанная с необходимостью доставки на крышу собранного коллектора




    Высокая парусность

    Гибридная солнечная панель

    http://akbinfo.ru/wp-content/uploads/2016/11/7-8.jpg

    Суть гибридной солнечной батареи заключается в том, что она работает как солнечная батарея для вырабатывания электричества и как коллектор для нагрева воды.

    • Необычная конструкция таких гибридных солнечных коллекторов позволяет использовать фотогальванические модули для нагрева теплоносителя — воды, а не только для выработки электричества. Таким образом, избыточное тепло отбирается и используется для обеих задач без остатка. В итоге у потребителя есть и электричество и горячая вода при одном приборе. Это не только сохраняет площадь, но и позволяет сэкономить на дорогих материалах для солнечных батарей.

    • Для примера можно разобрать схему работы такого аппарата, американской компании Cogenra Solar. Гибридная солнечная панель в работе крайне проста и понятна. Зеркала параболической формы улавливают и собирают в пучок лучи солнца и перенапрявляют его на фотоэлектрические приёмники. Приёмники изготовлены из привычного кристаллического кремния. Под плоскостью таких приёмников устроены ёмкости, которые подводят жидкий теплоноситель и циркулируют его по всей системе. В итоге при выработке электроэнергии, на фоне, сзади батарей греется вода для бытовых нужд. Интересно, что такая система не только греет воду, но и охлаждает батареи, циркулируя по системе. Это также позволяет не падать уровню КПД при повышении температуры воздуха, как это бывает у обычных батарей.




    • Энергетическая эффективность такой гибридной батареи позволяет производить 50 кВт для нужд пользователя в электроэнергии и 220 кВт тепловой энергии. Получается, что при таком расходе первоначальной солнечной тепловой энергии, реально выжать до 80% от общего полученного количества. Отчасти это происходит благодаря механическим приводам, которые разворачивают панели к солнцу, позволяя тем самым ещё больше увеличить полученную от солнца энергию.

    • Такая чудо электро-теплостанция найдёт применение в каждом загородном доме, обеспечивая проживающих не только электроэнергией но и тёплой водой. Ну и конечно такая электроэнергия и такая тёплая вода на порядок дешевле централизованных ресурсов. Даже с условием того, что окупаться вся эта система будет несколько лет. А если говорить про цену, то гибридные солнечные коллекторы помогут сэкономить, потому что содержать два устройства в одной схеме.

    Кроме фотоэлементов, для получения электрической энергии применяются тонкопленочные или гибкие солнечные панели. Их преимуществом является малая толщина, а недостатком – сниженный КПД. Такие модели часто используются в портативных зарядках для различных гаджетов. http://akbinfo.ru/wp-content/uploads/2016/11/8-2.jpg

    Гибкая солнечная панель

    Термовоздушный способ преобразования подразумевает

    получение энергию потока воздуха. Этот поток направляется на турбогенератор. В аэростатных электростанциях под действием солнечной энергии в аэростатном баллоне генерируется водяной пар. Поверхность аэростата покрывается специальным покрытием, поглощающим солнечные лучи. Такие электростанции способны работать в пасмурную погоду и в тёмное время суток благодаря запасу пара в аэростате.

    Гелиотремальная энергетика основана на нагреве поверхности энергоносителя в специальном коллекторе. Например, это может быть нагрев воды для системы отопления дома. В качестве теплоносителя может использоваться не только вода, но и воздух. Он может нагреваться в коллекторе и подаваться в систему вентиляции дома.

    Все эти системы стоят достаточно дорого, но их освоение и совершенствование постепенно продолжается.
      1   2   3


    написать администратору сайта