биология. EKZAMEN_BIO (Восстановлен). Краткий обзор 1) единство химического состава, 2) обмен веществ, 3) самовоспроизведение (репродукция), 4) наследственность
Скачать 1.8 Mb.
|
125 МДа у позвоночных.По данным электронной микроскопии, ядерные поры в поперечном сечении имеют форму «восьмиспицевого тележного колеса», то есть имеют ось симметрии восьмого порядка. Эти данные подтверждает тот факт, что молекулы нуклеопоринов присутствуют в составе ядерной поры в количестве, кратном восьми. Проницаемый для молекул канал располагается в центре структуры. Ядерные поровые комплексы заякорены на ядерной оболочке с помощью трансмембранной части, от которой к просвету канала обращены структуры, получившие название спиц (англ., spokes), по аналогии со спицами тележного колеса. Эта коровая часть поры, построенная из восьми доменов, с цитоплазматической и ядерной сторон ограничена соответственно цитоплазматическим и ядерным кольцами (англ., rings; у низших эукариот они отсутствуют). К ядерному кольцу прикреплены белковые, направленные внутрь ядра, тяжи (ядерные филаменты, англ., filaments), к концам которых крепится терминальное кольцо (англ., terminal ring). Вся эта структура носит название ядерной корзины (англ., nuclear basket). К цитоплазматическому кольцу также прикреплены направленные в цитоплазму тяжи — цитоплазматические филаменты. В центре ядерной поры видна электрон-плотная частица, «втулка» или транспортёр(англ., plug).Структура. Ядерные поровые комплексы (англ. nuclear pore complex, NPC) устроены сходным образом у всех исследованных на сегодняшний день организмов. Они образованы множеством копий примерно 30 разных белков-нуклеопоринов[1]. Масса ядерных поровых комплексов колеблется в пределах от |
Структура | Строение | Функции |
Ядерная оболочка | Двухслойная пористая. Наружная мембрана переходит в мембраны ЭС. Свойственна всем клеткам животных и растений, кроме бактерий и синезеленых, которые не имеют ядра | Отделяет ядро от цитоплазмы. Регулирует транспорт веществ из ядра в цитоплазму (РНК, субъединицы рибосом) и из цитоплазмы в ядро (белки, жиры. углеводы, АТФ, вода, ионы) |
Ядерная оболочка - мембранный барьер, отделяющий ядро от цитоплазмы. Она контролирует перемещение макромолекул между нуклеоплазмой и цитозолем, участвует в заякоревании (процесс, при котором любой внешний или внутрениий фактор становится триггером, вызывающим определенную реакцию) хромосом и цитоскелета, являясь частью регуляторного механизма экспрессии у эукариот.
Мутации в белках ядерной оболочки проявляются в виде различных заболеваний, таких как мышечная дистрофия, нейропатия, липидодистрофия, преждевременное старение
В состав ядерной оболочки входят мембрана, ядерный поровый комплекс и ламина.
Ядерная оболочка образована внешней и внутренней мембранами. Наружная мембрана переходит в шероховатый эндоплазматический ретикулум, и обеспечивает присоединение структурных элементов цитоплазмы. Внутренняя выстлана белками – ламининами, образующими ядерную пластинку, которая закрепляет различные ядерные структуры. Между мембранами располагается перинуклеарное пространство.
В состав ядерной оболочки также входит поровый комплекс, обеспечивающий транспорт различных веществ, в том числе макромолекул, между ядром и цитоплазмой.
Вопрос 33.
Строение интерфазного клеточного ядра
1) Ядерная оболочка. Она состоит из 2 мембран: наружной и внутренней. Между ними есть пространство, которое сообщается с каналами ЭПС. В ядерной оболочке есть поры. Они имеют сложное строение. Чем активнее клетка, тем пор больше. Через поры идет транспорт веществ в ядро и из него. Функции ядерной оболочки: барьерная, транспорт веществ.
2) Ядерный сок - кариоплазма. Это бесцветный коллоидный раствор. Он содержи белки, липиды, углеводы, минеральные вещества.
3) Ядрышко. Может быть 1 или несколько ядрышек. Оно имеет округлую форму, состоит из белков и РНК, находится у вторичной перетяжки некоторых хромосом. Функция: синтез рибосом.
4) Хромосомы.
Вещество хромосомы называется хроматин. Он состоит из ДНК - 40% и белков - 60%. ДНК - это полимер с большой молекулярной массой, состоящий из мономеров – нуклеотидов.
В состав нуклеотида ДНК входят:
азотистые основания. Их 4: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц).
дезоксирибоза
фосфорная кислота.
Нуклеотиды соединяются друг с другом через фосфорную кислоту одного нуклеотида и дезоксирибозу другого и образуют цепочку. Молекула ДНК состоит из 2 цепочек, которые соединяются друг с другом через азотистые основания по принципу комплиментарности. Аденин комплементарен тимину, между ними 2 водородные связи, а гуанин комплементарен цитозину, между ними 3 водородные связи. Молекула ДНК - это правозакрученная спираль, состоящая из 2 полинуклеотидных цепочек, которые соединены по принципу комплиментарности и направлены антипараллельно относительно друг друга.
Функции ДНК: хранение, использование, удвоение и реализация наследственной информации .
Вся ДНК клетки называется геном клетки.
Ген - это последовательность нуклеотидов ДНК. несущая информацию о первичной структуре белка.
В процессе эволюции у эукариот увеличилась длина ДНК в 1000 раз по сравнению с прокариотами, а количество генов возрасло в 100 раз. В связи с этим появилась избыточная ДНК. У эукариот только 1% ДНК составляют активные гены, а 99% - избыточная ДНК.
Молекулярное строение гена у эукариот.
У эукариот выделяют три типа последовательностей ДНК:
1) Многократно повторяющиеся последовательности. Они занимают 15% ДНК. Они повторяются в геноме около 100 000 раз, содержат от 10 до 100 нуклеотидов, не несут наследственной информации.
2) Умеренно повторяющиеся последовательности нуклеотидов. Они занимают 10-50% ДНК у разных эукариот (у человека 10%) . Они повторяются около 10 000 раз, содержат от 100 до 1000 нуклеотидов, в этих последовательностях находятся гены, отвечающие за р-РНК, т-РНК и белки-гистоны. Последовательности состоят из кодирующих участков, называемых гены и некодирующих участков, называемых спейсоры.
3) Уникальные гены. Занимают 75% ДНК. Повторяются до 10 раз, содержат более 1000 нуклеотидов, они кодируют все структурные белки, кроме гистонов. Уникальные гены имеют расщепленное строение. В пределах гена есть как кодирующие участки, называемые экзоны, так и некодирующие участки, называемые интроны.
Строение интерфазного клеточного ядра.34
1 ядро — самая крупная органелла эукариотической клетки.
2 Ядро состоит из хроматина, ядрышка и нуклеоплазмы, окружённых ядерной оболочкой.
3 Хроматин Термином «хроматин» обозначают комплекс ядерной двуцепочечной ДНК с белками (гистоны, негистоновые белки). Различают гетеро- и эухроматин.
4 Ядрышко (nucleolus) Оно не является самостоятельной органеллой; это компактная структура в ядре интерфазных клеток, содержащая петли ДНК 13, 14, 15, 21 и 22 хромосом
5Ядерная оболочка состоит из внутренней и наружной ядерной мембраны и ядерной пластинки.
6 Нуклеолазма заключена в ядерную оболочку, состоит из ядерного матрикса и ядерных частиц
Ядро (nucleus) — самая крупная органелла эукариотической клетки диаметром от 3 до 10 мкм. Ядро может быть различной формы (например, округлое, овальное, палочковидное, бобовидное, сегментированное). Как правило, клетка имеет одно ядро, однако встречаются двуядерные (клетки печени) и многоядерные клетки остеокласты Эритроциты млекопитающих в ходе эволюции утратили ядро. Ядро состоит из хроматина, ядрышка и нуклеоплазмы, окружённых ядерной оболочкой.
Хроматин Термином «хроматин» обозначают комплекс ядерной двуцепочечной ДНК с белками (гистоны, негистоновые белки). Хроматин представлен хроматиновыми волокнами диаметром 11 нм, состоящими из сферических структурных единиц — нуклеосом .Гистоны (H2A, H2B, H3 и H4) в составе нуклеосом содержат большое количество положительно заряженных аминокислот аргинина и лизина, что увеличивает аффиность гистонов к отрицательно заряженной ДНК.. Различают гетеро- и эухроматин.
• Гетерохроматин — транскрипционно неактивный, конденсирован- ный хроматин интерфазного ядра. Располагается преимущественно по перифе рии ядра и вокруг ядрышек, составляет 10% от общего хроматина. Типичный пример гетерохроматина — тельце Барра
• Эухроматин — менее конденсированная (диспергированная) часть хроматина, локализуется в более светлых участках ядра между гетерохроматином
Ядрышко (nucleolus) — округлой формы тельце диметром 1—5 мкм. Оно не является самостоятельной органеллой; это компактная структу- ра в ядре интерфазных клеток, содержащая петли ДНК 13, 14, 15, 21 и 22 хромосом . Плотный фибриллярный компонент (pars fibrosa) состоит из транскрипционно активных участков ДНК. Гранулярный компонент (pars granulosa) содержит зрелые предшественники рибо- сомных субъединиц (СЕ). Основные функции ядрышка — синтез рРНК (транскрипция и процессинг рРНК) и образование СЕ рибосом.
Ядерная оболочка
Ядерная оболочка состоит из внутренней и наружной ядерной мембраны и ядерной пластинки. •На поверхности наружной ядерной мембраны расположены рибосомы, где синтезируются белки, поступающие в перинуклеарную цистер у Перинуклеарная цистерна локализуется между наружной и внутренней мембранами, шириной в 20–40 нм. В местах слияния двух мембран расположены ядерные поры. • Внутренняя ядерная мембрана снаружи граничит с перинуклеарной ци- стерной, изнутри отделена от содержимого ядра ядерной пластинкой. • Ядерная пластинка толщиной 80–300 нм содержит белки промежу- точных филаментов — ламины A, B и C, участвует в организации ядерной оболочки и перинуклеарного хроматина • Комплекс ядерной поры образован 8 белковыми гранулами, сформи- рованных примерно из 100 разных белков, которые контролируют ядерный импорт (факторы транскрипции) и экспорт (РНК) Нуклеоплазма
Нуклеолазма заключена в ядерную оболочку, состоит из ядерного матрикса (рибонуклеопротеиновая сеть) и ядерных частиц (ассоциатов разных молекул — АТФазы, ГТФазы, НАД-пирофосфатазы, ДНК- и РНК-полимеразы, факторов транскрипции, ядерных рецепторов).
Вопрос 34
Организация хроматина. Эухроматин и гетерохроматин
Краткий обзор ответа:
Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс—хроматин, получивший свое название за способность окрашиваться основными красителями.
Хроматин (хроматиновая нить) представляет собой интерфазное состояние хромосомы и отличается от последних степенью спирализации и, соответственно, длиной. Поэтому число хроматиновых нитей в соматических клетках должно соответствовать диплоидному набору хромосом. Хроматин - это функционально активное состояние хромосом!
Хроматин, также, как и хромосома, неоднороден по своей структуре. Различают два типа хроматина: эухроматин и гетерохроматин, которые морфологически и функционально отличаются друг от друга. Эухроматин - это деспирализованные и функционально активные участки хроматина, в этих участках интенсивно происходят процессы транскрипции. Гетерохроматин - более спирализованные и функционально неактивные участки хроматина. Эти участки содержат незначительное количество структурных генов и, по существу, представляют собой участки хроматина временно или постоянно выключенные из процессов регуляции клеточной активности.
В разных типах тканей и на различных этапах индивидуального развития чередование и расположение участков эухроматина и гетерохроматина определенной хроматиновой нити могут существенно отличаться. Возможно это является одним из механизмов клеточной дифференцировки.
Основная часть:
В ядре клеток обнаруживаются мелкие зернышки и глыбки материала, который окрашивается основными красителями и поэтому был назван хроматином (от греч. chroma – краска) .
Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белками-гистонами или негистоновыми белками. Гистоны и ДНК объединены в структуры, которые называются нуклеосомами. Хроматин соответствует хромосомам, которые в интерфазном ядре представлены длинными перекрученными нитями и неразличимы как индивидуальные структуры. Выраженность спирализации каждой из хромосом неодинакова по их длине. Реализацию генетической информации осуществляют деспирализованные участки хромосом.
Классификация хроматина. Различают два вида хроматина:
1) эухроматин, локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компактный, более активен в функциональном отношении. Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и открыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.
2) гетерохроматин - плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции). Он интенсивно окрашивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул. Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т. е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Конститутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухроматин в некоторых клетках или на разных стадиях онтогенеза организма. Примером скопления факультативного гетерохроматина является тельце Барра – инактивированная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. В большинстве клеток оно лежит у кариолеммы.
Таким образом, по морфологическим признакам ядра (по соотношению содержания эу- и гетерохроматина) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. При её повышении это соотношение изменяется в пользу эухроматина, при снижении – нарастает содержание гетерохроматина. При полном подавлении функций ядра (например, в поврежденных и гибнущих клетках, при ороговении эпителиальных клеток эпидермиса – кератиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основными красителями интенсивно и равномерно. Такое явление называется кариопикнозом (от греч. karyon – ядро и pyknosis – уплотнение).
Хроматин и хромосомы представляют собой дезоксирибонуклеопротеиды (ДНП) , но хроматин – это раскрученное, а хромосомы – скрученное состояние. Хромосом в интерфазном ядре нет, они появляются при разрушении ядерной оболочки (во время деления).
Распределение гетерохроматина (топография его частиц в ядре) и соотношение содержания эу- и гетеро-хроматина характерны для клеток каждого типа, что позволяет осуществить их идентификацию как визуально, так и с помощью автоматических анализаторов изображения. Вместе с тем, имеются определенные общие закономерности распределения гетерохроматина в ядре: его скопления располагаются под кариолеммой, прерываясь в области пор (что обусловлено его связью с ламиной) и вокруг ядрышка (перинуклеолярный гетерохроматин), более мелкие глыбки разбросаны по всему ядру.