Главная страница
Навигация по странице:

  • 6.1. Круговорот воды Круговорот воды

  • 6.2. Круговорот кислорода Кислород

  • . Свободный кислород – необходимое условие существования преобладающего большинства живых организмов – сам является продуктом жизни.

  • 6.3. Круговорот углерода Углерод

  • Основная масса углерода в земной коре находится в связанном состоянии.

  • Тропические леса Умеренные лесаБореальные леса

  • Лекция 7. ПОТОК ЭНЕРГИИ В БИОСФЕРЕ

  • 7.1. Общая схема превращения энергии в экосистеме.Понятие продукции и продуктивности

  • Экология Часть 1. Курс лекций Красноярск сфу 2 010 удк 574(042. 4)(075) ббк 28. 081 я 73 Ч90 а вторы


    Скачать 1.38 Mb.
    НазваниеКурс лекций Красноярск сфу 2 010 удк 574(042. 4)(075) ббк 28. 081 я 73 Ч90 а вторы
    Дата11.03.2018
    Размер1.38 Mb.
    Формат файлаdoc
    Имя файлаЭкология Часть 1.doc
    ТипКурс лекций
    #38176
    страница9 из 11
    1   2   3   4   5   6   7   8   9   10   11

    Лекция 6. КРУГОВОРОТЫ ВЕЩЕСТВ В ЭКОСИСТЕМАХ
    Круговорот воды. Круговорот кислорода. Круговорот углерода

    Жизнь, возникнув на Земле, на протяжении миллиардов лет находится в постоянном развитии. Это происходит благодаря тому, что элементы живого вещества, поступающие из окружающей среды, пройдя через ряд организмов, снова возвращаются во внешнюю среду, а затем опять включаются в состав живого вещества (рис. 8). Таким образом, каждый элемент используется живой материей многократно.

    Именно круговоротом веществ обусловлено неограниченное временем существование, постоянное развитие и совершенствование жизни на Земле.


    Рис. 8. Схема биологического круговорота
    Все процессы на Земле на исходном этапе обеспечиваются энергией Солнца. Наша планета получает от Солнца 4–5·1013 ккал/с. Только 0,1–0,2 % солнечной энергии поглощается растениями, однако эта энергия совершает огромную работу: она «запускает» процессы биосинтеза и трансформируется в энергию химических связей синтезируемых органических веществ. Биогенные элементы в отличие от энергии удерживаются в экосистеме, где они совершают непрерывный круговорот, в котором участвуют как живые организмы, так и физическая среда.

    Поскольку растения и животные могут использовать только те биогенные элементы, которые находятся на поверхности Земли или вблизи нее, для сохранения жизни необходимо, чтобы вещества, ассимилированные живыми организмами, в конечном счете становились доступными другим организмам.

    Каждый химический элемент, совершая круговорот в экосистеме, следует по своему особому пути, но все круговороты приводятся в движение энергией, и участвующие в них элементы попеременно переходят из органической формы в неорганическую и наоборот.

    Энергия Солнца вызывает движение двух круговоротов – большого геологического и малого биологического. Большой, или геологический, круговорот – круговорот веществ в системе: геохимический поток суши – гидрографическая сеть – океан – воздушные массы – аэрозоли – геохимический поток суши. Наиболее ярко проявляется в круговороте воды и циркуляции атмосферы. Малый, биологический (биотический), – поступление химических элементов из почвы и атмосферы в живые организмы; превращение в них поступающих элементов в новые сложные соединения и возвращение их в почву и атмосферу в процессе жизнедеятельности с ежегодным опадом части органического вещества или с полностью отмершими организмами, входящими в состав экосистемы.

    Оба круговорота взаимно связаны и представляют собой единый процесс движения вещества на нашей планете.

    Как было отмечено в лекциях 1–5, для любой экосистемы (основной структурной единицы биосферы) характерен постоянный обмен веществом, энергией и информацией между отдельными ее компонентами. Обмен биогенными элементами между живыми организмами и неживыми компонентами в большинстве сообществ сбалансирован. Экосистему можно представить в виде ряда блоков, через которые проходят различные вещества и в которых эти вещества могут оставаться на протяжении длительного времени. В круговоротах минеральных веществ в экосистеме в большинстве случаев участвуют три активных блока: живые организмы, мертвый органический детрит и доступные неорганические вещества. Два добавочных блока – косвенно доступные неорганические вещества и осаждающиеся органические вещества – связаны с круговоротами биогенных элементов в каких-то периферических участках, однако обмен между этими блоками и остальной экосистемой замедлен по сравнению с обменом, происходящим между активными блоками.

    Живые организмы и биосфера в целом состоят из тех же химических элементов, которые встречаются в окружающей среде. Для синтеза биомассы необходимо около 40 элементов, из которых самыми важными являются углерод, азот, кислород, водород, фосфор и сера. Их называют биогенными элементами. Основную биомассу дают углерод, кислород, водород. Они составляют 99,9 % веса живых организмов, образуют 99 % веса всей земной коры нашей планеты и тем самым обеспечивают устойчивость жизни на Земле. Все остальные химические элементы находятся в рассеянном состоянии. Большую часть веса живых организмов дают О2 и С. Они составляют от 50 до 90 % их сухого абсолютного веса.

    Биогенные элементы, попеременно переходя из живой материи
    в неорганическую, участвуют в различных биогеохимических циклах.

    Биогеохимические циклы – круговорот химических элементов: из неорганической природы через растительные и животные организмы обратно в неорганическую. Совершается с использованием солнечной энергии и энергии химических реакций.

    Согласно закону биогенной миграции атомов В. И. Вернадского «миграция химических элементов на земной поверхности и в биосфере
    в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей геологической истории».

    Биогеохимические циклы можно разделить на две группы:

    круговорот газов, в которых атмосфера служит главным резервуаром элемента (углерод, азот, кислород, вода);

    круговороты осадочные, элементы которых в твердом состоянии входят в состав осадочных пород (фосфор, сера и др.).

    Обмен биогенными элементами между живыми организмами и неорганической средой в большинстве сообществ сбалансирован.

    В результате количество биомассы живого вещества биосферы Земли приобретает тенденцию к определенному постоянству. Биомасса биосферы (2·1012 г) на семь порядков меньше массы земной коры (2·1019 т). Растения Земли ежегодно продуцируют органическое вещество, равное 1,6·1011 т, или 8 % биомассы биосферы. Деструкторы, составляющие менее 1 % от суммарной биомассы организмов планеты, перерабатывают массу органического вещества, в 10 раз превосходящую их собственную биомассу. В среднем период обновления биомассы равен 12,5 года.

    Существование биогенных круговоротов создает возможность для саморегуляции (гомеостаза) системы, что придает экосистеме устойчивость - постоянство процентного содержания различных элементов. Таким образом, действует основной принцип функционирования экосистем: получение ресурсов и избавление от отходов происходит в рамках круговорота всех элементов.

    Рассмотрим более подробно циклы основных биогенных элементов. Начнем с круговорота воды, поскольку в экосистемах он оказывает решающее значение на передвижение кислорода и водорода. Организмы быстро теряют воду путем испарения и выделения, за время жизни особи вода, содержащаяся в организме, может обновляться сотни и тысячи раз.

    6.1. Круговорот воды
    Круговорот воды – один из главных компонентов абиотической циркуляции веществ, включает переход воды из жидкого в газообразное и твердое состояние и обратно (рис. 9). Он обладает всеми основными чертами других круговоротов – также примерно сбалансирован в масштабе всего земного шара и приводится в движение энергией. Круговорот воды – самый значительный по переносимым массам и затратам энергии круговорот на Земле. Каждую секунду в него вовлекается 16,5 млн м3 воды и тратится на это более 40 млрд МВт солнечной энергии.

    cloud







    Рис. 9. Круговорот воды в природе
    Основные процессы, обеспечивающие круговорот воды, – инфильтрация, испарение, сток:

    1. Инфильтрация – испарение –транспирация: вода впитывается почвой, удерживается в качестве капиллярной воды, а затем возвращается в атмосферу, испаряясь с поверхности земли, или же поглощается растениями и выделяется в виде паров при транспирации;

    2. Поверхностный и внутрипочвенный сток: вода становится частью поверхностных вод. Движение грунтовых вод: вода попадает под землю и движется сквозь нее, питая колодцы и родники, вновь попадает в систему поверхностных вод.

    Таким образом, круговорот воды можно представить в виде двух энергетических путей: верхний путь (испарение) приводится в движение солнечной энергией, нижний (выпадение осадков)– отдает энергию озерам, рекам, заболоченным землям, другим экосистемам и непосредственно человеку, например на ГЭС. Деятельность человека оказывает огромное влияние на глобальный круговорот воды, что может изменять погоду и климат. В результате покрытия земной поверхности непроницаемыми для воды материалами, строительства оросительных систем, уплотнения пахотных земель, уничтожения лесов и т. п. сток воды в океан увеличивается и пополнение фонда грунтовых вод сокращается. Во многих сухих областях эти резервуары выкачиваются человеком быстрее, чем заполняются.
    В России для водоснабжения и орошения земель разведано 3 367 месторождений подземных вод. Эксплуатационные запасы разведанных месторождений составляют 28,5 км3/год. Степень освоения этих запасов составляет в РФ не более 33 %, а в эксплуатации находится 1 610 месторождений.

    Особенность круговорота в том, что из океана испаряется воды больше (примерно 3,8·1014 т), чем возвращается с осадками (примерно 3,4·1014 т). На суше, наоборот, осадков выпадает больше (примерно 1,0·1014 т), чем испаряется (суммарно около 0,6·1014 т). В связи с тем, что из океана воды испаряется больше, чем возвращается, значительная часть осадков, используемых экосистемами суши, в том числе и агроэкосистемами, производящими пищу для человека, состоит из воды, испаряющейся из моря. Излишки воды с суши стекают в озера и реки, а оттуда снова в океан. По существующим оценкам, в пресных водоемах (озерах и реках) содержится 0,25·1014 т воды, а годовой сток составляет 0,2·1014 тонн. Таким образом, время оборота пресных вод составляет примерно один год. Разность между количеством осадков, выпадающих на сушу за год (1,0·1014 т), и стоком (0,2·1014 т) составляет 0,8·1014 т, которые испаряются и поступают в подпочвенные водоносные горизонты. Поверхностный сток частично пополняет резервуары грунтовых вод и сам пополняется от них.

    Атмосферные осадки являются основным звеном влагооборота и во многом определяют гидрологический режим экосистем суши. Их распределение по территории, особенно в горах, неравномерно, что связано с особенностями атмосферных процессов и подстилающей поверхности. Так, например, для лесотундровых редколесий Путоранской лесорастительной провинции Средней Сибири годовая сумма осадков составляет
    617 мм, для северотаежных лесов Нижне-Тунгусского лесорастительного округа – 548, а для южнотаежных лесов Приангарья она уменьшается до 465 мм (табл. 2).

    Испарению принадлежит одно из ведущих мест. С появлением жизни на Земле круговорот воды стал относительно сложным, так как к физическому явлению превращения воды в пар добавился процесс биологического испарения, связанный с жизнедеятельностью растений и животных – транспирация. Наряду с осадками и стоком эвапотранспирация, включающая испарение перехваченных осадков, транспирационный расход влаги растениями и подпологовое испарение, является основной расходной статьей водного баланса, особенно в лесных экосистемах. Например,
    в тропическом влажном лесу количество воды, испаряемой растениями, достигает 7000 м3/км2 в год, тогда как в саванне на той же широте и высоте с той же площади оно не превышает 3000 м3/км2 в год.

    Растительность в целом играет значительную роль в испарении воды, влияя тем самым на климат регионов. Интенсивность эвапотранспирации зависит от радиационного баланса и различной продуктивности растительности. Как видно из табл. 2, при увеличении надземной фитомассы вследствие большего испарения перехваченных осадков и транспирационного расхода влаги суммарное испарение возрастает.

    Таблица 2

    Эвапотранспирация лесных экосистем Енисейского меридиана


    Округ, провинция

    Запас древостоев, м3/га*

    Осадки, мм**

    Испарение, мм***

    перехваченных осадков

    всего

    Притундровые леса

    Путоранская
    лесорастительная провинция

    68

    617

    36

    196

    Северная тайга

    Туруханский
    лесорастительный округ

    90

    508

    111

    283

    Южная тайга

    Приангарский
    лесорастительный округ

    188

    465

    104

    387


    * – Ведрова и др. (из кн. Лесные экосистемы Енисейского меридиана, 2002);

    **, *** – Буренина и др.(там же).
    Кроме того, высшая растительность выполняет очень важную для наземных экосистем водоохранную и водорегулирующую функцию: смягчает паводки, удерживая влагу в почвах и препятствуя их иссушению и эрозии. Например, при вырубке леса в одних случаях увеличивается вероятность затопления и заболачивания территории, в других – прекращающийся процесс транспирации может привести к «осушению» климата. Обезлесение негативно влияет на подземные воды, снижая способность местности задерживать осадки. В некоторых местах леса помогают пополнять водоносные слои, хотя в большинстве случаев леса как раз истощают их.
    Таблица 3

    Долевое соотношение пресных и соленых вод на Земле


    Типы вод

    Процент
    от общих
    запасов

    Поверхностные воды

    Пресноводные озера

    Соленые озера и внутренние моря
    Текучие воды

    0,007

    0,008

    0,0002

    Подземные воды

    Подземные воды

    В том числе пресные

    1,7

    0,76




    Ледники и постоянные снега

    Атмосфера

    Океаны

    1,74

    0,001

    96,5

    Общие запасы воды на Земле оцениваются приблизительно от 1,5 до 2,5 млрд км3. Соленая вода составляет около 97 % объема водной массы, на Мировой океан приходится 96,5 % (табл. 3). Объем пресных вод, по разным оценкам, составляет 35–37 млн км3, или 2,5–2,7 % общих запасов воды на Земле. Большая часть пресных вод (68–70 %) сосредоточена в ледниках и снежном покрове (по Реймерсу, 1990).

    6.2. Круговорот кислорода
    Кислород – самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 88,8 % (по массе), в современной атмосфере содержание свободного кислорода составляет 20,95 % по объему и 23,12 % по массе. Более 1 500 соединений земной коры в своем составе содержат кислород. Он входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле – около 65 %.

    Земля является единственной планетой нашей солнечной системы, в атмосфере которой содержится значительное количество свободного кислорода. Свободный кислород – необходимое условие существования преобладающего большинства живых организмов – сам является продуктом жизни. Не только весь атмосферный кислород, но и значительная часть «ископаемого» кислорода осадочных пород имеет фотосинтетическое происхождение. Процесс фотосинтеза описывается формулой

    энергия

    6СО2 + 6Н2О С6Н12О6 + 6О2.
    Для того чтобы могла протекать данная реакция, необходимо затратить энергию. Однако только наличия всех ингредиентов фотосинтеза для его протекания недостаточно. В земной атмосфере содержатся двуокись углерода и водяные пары и она освещена Солнцем, однако нас не заливает потоками сахара. Вероятность возникновения соответствующей химической реакции достаточно мала. В клетках растений содержатся особые пигменты (например, хлорофиллы) и ферменты, обеспечивающие такое взаимодействие между молекулами и энергией, при котором вероятность возникновения химических реакций фотосинтеза весьма велика. Количество свободного кислорода, образующегося под действием ультрафиолетовых лучей за счет небиологического фотолиза паров воды в верхних слоях атмосферы, составляет лишь тысячные доли процента от поставляемого фотосинтезом. Растительный мир биосферы ежегодно выделяет в процессе фотосинтеза около 430–470 млрд т кислорода.

    Основные ветви круговорота кислорода – образование свободного кислорода при фотосинтезе и его поглощение в процессе дыхания живых организмов (рис. 10).

    Окисление

    Дыхание

    Окисление

    Окисление органических
    остатков

    Деятельность
    человека

    Фотосинтез

    Рис. 10. Круговорот кислорода
    Итак, появление автотрофных организмов, способных к фотосинтезу, явилось грандиозным шагом вперед на пути развития жизни и эволюции всей биосферы. За время существования фотосинтезирующих организмов вся вода нашей планеты, весь ее кислород и водород прошли уже много циклов фотосинтетических превращений и обратных процессов – окисления органических веществ свободным кислородом. В нашу эпоху весь кислород атмосферы проходит через живое вещество примерно за 2000 лет. Полный круговорот воды, являющейся источником кислорода, выделяемого при фотосинтезе, осуществляется в биосфере примерно за 2 млн лет.

    Лишь при наличии молекулярного кислорода в окружающей среде могли возникнуть и развиваться сложные многоклеточные организмы, получающие необходимую им энергию окислением в процессе дыхания органических веществ, созданных автотрофами. Жизнедеятельность ранее существовавших гетеротрофных организмов, вероятно, поддерживалась за счет брожения, субстратами для которого служили органические соединения, образовавшиеся химическим путем в первичном Мировом  океане.

    На протяжении всего своего существования биосфера оказывала огромное влияние на процессы, происходящие в атмосфере, литосфере и гидросфере Земли. Большую роль в этом воздействии сыграл свободный кислород, выделяющийся в процессе фотосинтеза. Образование озонового экрана,  окисление окиси углерода, появлявшейся в результате вулканической деятельности, накопление сульфатных осадочных пород и т. д. – везде участвует молекулярный кислород фотосинтеза.

    Только после возникновения фотосинтезирующих организмов, когда в процессе их жизнедеятельности в атмосфере нашей планеты накопилось достаточное количество свободного кислорода для образования озонового экрана, жизнь смогла выйти на сушу. С этого момента началась новая эпоха в развитии и совершенствовании биосферы Земли.

    Озон (О3) – в переводе с греческого «пахнущий», газ голубого цвета с характерным запахом – обладает большой химической реактивностью
    и токсичностью.

    Озоновый экран – слой атмосферы в пределах стратосферы, лежащий на высотах 7–8 км на полюсах, 17–18 – на экваторе и до 50 км над поверхностью планеты и отличающийся повышенной концентрацией молекул озона (в 10 раз выше, чем на поверхности земли), поглощающих ультрафиолетовое излучение, гибельное для организмов. Например, вода и воздух иногда подвергаются озонированию для уничтожения микроорганизмов и устранения неприятных запахов в воде и воздухе. На образование озона тратится около 5 % поступающей к Земле солнечной энергии. Реакция легко обратима. При распаде озона эта энергия выделяется, за счет чего в верхних слоях атмосферы поддерживается высокая температура. Озон служит своеобразным ультрафиолетовым фильтром: задерживает значительную часть жестких УФ-лучей. Именно поэтому образование озонового слоя считают одним из условий выхода жизни из океана и заселения суши.

    Об озоновой «драме» в Антарктиде впервые сообщил журнал
    «Nature» в 1985 г. С тех пор результаты измерений содержания озона подтверждают повсеместное уменьшение озонового слоя практически на всей планете.

    «Озоновая дыра» – это устойчивое понижение общего содержания озона (ОСО) на большой территории ниже климатической нормы (с англ. – hole – дыра, нора, яма, отверстие, углубление). Правильнее было бы говорить: «провисание озонового слоя». Этот термин отражает геометрическую особенность поверхности, представляющей собой значение ОСО
    (в единицах Добсона) как функцию земных координат.

    Причины возникновения «дыры» пока не совсем ясны. Предполагается как естественное, так и (в большей степени) антропогенное (от выбросов фреонов и сведения лесов как продуцентов кислорода). Большинство экологов считают, что глобальное загрязнение атмосферы является причиной нарушения плотности озонового экрана. В настоящее время наибольшее влияние на круговорот кислорода в биосфере оказывает деятельность человека. Человечество ежегодно потребляет около 1 010 т молекулярного кислорода. Огромное количество кислорода расходуют автомобили, самолеты, теплоходы и т. д.

    6.3. Круговорот углерода
    Углерод существует в природе во многих формах, в том числе в составе органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента, – диоксид углерода (СО2). Он входит в состав атмосферы, а также находится в растворенном состоянии в гидросфере.

    Основная масса углерода в земной коре находится в связанном состоянии. Важнейшие минералы углерода – карбонаты, количество углерода в них оценивается в 9,6·1015 т. Разведанные запасы горючих ископаемых (уголь, нефть, шунгит, битумы, торф, сланцы, газы) содержат
    около 1·1013 т углерода, что соответствует средней скорости накопления
    7 млн т /год. Это количество по сравнению с массой циркулирующего углерода незначительное и как бы выпадает из круговорота и теряется в нем.

    Содержание углекислоты в атмосфере около 0,03 %, в почвенном воздухе – на порядок больше.

    Круговорот углерода – самый интенсивный. Источником первичной углекислоты биосферы считается вулканическая деятельность. В современной биосфере на выделение СО2 из мантии Земли при вулканических извержениях приходится не более 0,01 %, и одним из основных источников углекислоты в атмосфере является дыхание. Включение углерода в состав органических веществ происходит благодаря растительным фотосинтезирующим организмам. Растительность постоянно обменивается веществом и энергией с атмосферой и почвой и, таким образом, круговорот углерода представляет собой сложную взаимозависимую цепь обменных процессов в системе «атмосфера-растительность-почва-атмосфера».

    В круговороте углерода можно выделить два важнейших звена, имеющих планетарные масштабы и связанные с выделением и поглощением кислорода (рис. 11):

    фиксация СО2 в процессе фотосинтеза и генерация кислорода (агенты – растения);

    минерализация органических веществ (разложение до СО2) и затрата кислорода (основные агенты – микроорганизмы; на животных, например, приходится от 4 до 10–15 % эмиссии углекислоты).

    Микроорганизмы и животные-деструкторы разлагают мертвые растения и погибших животных, в результате чего углерод мертвого органического вещества окисляется до диоксида углерода и снова попадает в атмосферу. Вклад почвенного дыхания (включая дыхание корней и биоты)
    в общую респирацию экосистемы может составлять от 40 до 70 %. При определенных условиях в почве разложение накапливающихся мертвых остатков идет замедленным темпом – через образование сапротрофными организмами гумуса, минерализация которого может идти с различной, в том числе и с низкой, скоростью.


    Рис. 11. Круговорот углерода (по Ф. Рамад, 1981)

    В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность деструкторов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа; углерод не высвобождается и имеет место его консервация. Аналогичные ситуации возникали и в прошлые геологические эпохи, о чем свидетельствуют отложения каменного угля, нефти, горючих сланцев, торфа и др.

    Особенность круговорота углерода состоит в консервации элемента. В далекие геологические эпохи, сотни миллионов лет назад, значительная часть органического вещества, созданного в процессах фотосинтеза, накапливалась в литосфере в виде ископаемого топлива. Сжигая его, мы в определенном смысле завершаем круговорот углерода.

    Таким образом, по разным оценкам, в среднем за год в процессе фотосинтеза связывается 60 млрд т углерода, в процессе разложения органического вещества высвобождается 48 млрд т углерода, поступает в почву и «консервируется» в многолетних фитоценозах 10 млрд т, погребается в осадочной толще литосферы (включая реакции диоксида углерода с горными породами) 1 млрд, поступает в результате сжигания топлива 4 млрд т углерода.

    Основные накопители углерода на Земле – леса: в биомассе лесов приблизительно в 1,5, а в лесном гумусе – в 4 раза больше углерода, чем в атмосфере. Особое планетарное значение в аккумуляции углерода имеют тропические и бореальные леса (табл. 4).
    Таблица 4

    Запасы углерода в основных биомах планеты

    Биомы

    Площадь

    (Гга)

    Запасы углерода (Гт)

    в растениях

    в почвах

    общие

    Тропические леса

    Умеренные леса

    Бореальные леса

    Тропические саванны

    Умеренные луга

    Пустыни и полупустыни

    Тундра

    Болота

    Сельскохозяйственные земли

    1,75

    1,04

    1,37

    2,76

    1,78

    2,77

    0,56

    0,35

    1,35

    340

    139

    57

    79

    23

    10

    2

    15

    4

    213

    153

    338

    247

    176

    159

    115

    225

    165

    553

    292

    395

    326

    199

    169

    117

    240

    169

    Общие запасы

    15,28

    669

    1792

    2461


    Северные леса имеют особое общепланетарное значение. Их роль в регулировании атмосферы и климата сейчас общепризнана. Косвенные данные об углеродном балансе свидетельствуют о высокой степени накопления углерода лесными экосистемами северных широт – в них сосредоточено около 33 % глобальных запасов углерода. Хотя бореальные леса и уступают тропическим по площади и запасам фитомассы, по своему воздействию на биосферу и параметрам углеродного цикла они существенно превосходят тропические экосистемы. Вследствие особенностей климатических условий бореальные леса аккумулируют углерод не только в фитомассе, но и в почвенном органическом веществе, в результате чего его связывание в процессе фотосинтеза превышает эмиссию в атмосферу за счет дыхания и минерализации органических остатков. На долю лесов России приходится 73 % площади бореальной зоны мира. Причем 42 % сосредоточено в Сибири. Суммарная аккумуляция углерода в лесных экосистемах Центральной Сибири (территория Красноярского края) составляет
    15 879 млн т (156 тС/га лесопокрытой территории), в том числе на надземную и подземную фитомассу приходится 26 %, остальное аккумулировано в органическом веществе верхней 50-сантиметровой толщи почв (22 %
    в мертвых растительных остатках, 52 % – в гумусе).

    Круговорот углерода совершается и в водной среде. Но здесь он более сложен по сравнению с континентальным, поскольку возврат этого элемента в форме СО2 зависит от поступления кислорода в верхние слои воды как из атмосферы, так и из нижележащей толщи.

    В целом показатели годичного круговорота массы углерода в Мировом океане почти вдвое ниже, чем на суше. Между сушей и океаном постоянно идут процессы миграции углерода, в которых преобладает вынос его в форме карбонатных и органических соединений с суши в океан. Из Мирового океана на сушу углерод поступает в незначительных количествах в форме СО2, выделяемого в атмосферу. Углекислый газ атмосферы и гидросферы обменивается и обновляется живыми организмами за 395 лет.

    До наступления индустриальной эры потоки углерода между атмосферой, сушей и океаном были сбалансированы. Влияние человека на круговорот углерода проявилось в том, что с развитием индустрии и сельского хозяйства поступление СО2 в атмосферу стало расти за счет антропогенных источников.

    Главная причина увеличения содержания СО2 в атмосфере - это сжигание горючих ископаемых, однако свой вклад вносят и транспорт, и уничтожение лесов. Миллиарды тонн углекислоты ежечасно поступают в атмосферу при сжигании дров, угля, нефти, газа. Энергетический бум
    ХХ в. увеличил содержание углекислоты в атмосфере на 25 %, метана –
    на 100 %.

    При уничтожении лесов содержание углекислого газа в атмосфере увеличивается при непосредственном сжигании древесины, за счет снижения фотосинтеза и при окислении гумуса почвы (если на месте лесов распахивают поля или строят города). Сокращение площадей лесов из-за рубок и пожаров, отчуждение лесных земель под разные виды строительства снижают секвестр углерода растительным покровом.

    Антропогенное воздействие на баланс углерода проявляется и в сельскохозяйственной деятельности, приводя к потере углерода в почве, так как фиксация (связывание) СО2 из атмосферы агрокультурами в течение лишь части года не компенсирует полностью высвобождающийся из почвы углерод, который теряется при окислении гумуса (результат частой вспашки).

    Повышение концентрации углекислого газа в атмосфере за последнее столетие, не сопровождаемое увеличением запасов фитомассы растительного покрова, свидетельствует о потере компенсаторных способностей биосферы.

    Лекция 7. ПОТОК ЭНЕРГИИ В БИОСФЕРЕ
    Общая схема превращения энергии в экосистеме. Понятие продукции и продуктивности. Первичная продуктивность крупных биомов. Изменения продуктивности
    и биомассы в ходе смены (сукцессии) экосистем


    7.1. Общая схема превращения энергии в экосистеме.
    Понятие продукции и продуктивности

    Деятельность живых существ в биосфере сопровождается потреблением из среды их обитания больших количеств разнообразных органических и неорганических веществ. После отмирания организмов и последующей минерализации их органических остатков высвободившиеся неорганические вещества вновь возвращаются во внешнюю среду. Так осуществляется биогенный (с участием живых организмов) круговорот веществ в природе, т. е. движение веществ между литосферой, атмосферой, гидросферой и живыми организмами.

    Круговорот веществ, как и все происходящие в природе процессы, требует постоянного притока энергии. Основой биогенного круговорота, обеспечивающего существование жизни, является солнечная энергия. Заключенная в органических веществах энергия, передаваемая по ступеням пищевой цепи, уменьшается, потому что значительная ее часть поступает в окружающую среду в виде тепла или же расходуется на осуществление процессов жизнедеятельности (например, мышечная работа, движение крови у животных, передвижение растворов минеральных и органических веществ, транспирация у растений). Поэтому через структурные единицы биосферы осуществляется непрерывный поток энергии и ее преобразование. Таким образом, биосфера может быть устойчивой только при условии постоянного круговорота веществ и притока солнечной энергии.

    В конкретных цепях питания можно проследить и рассчитать передачу той энергии, которая заключается в растительной пище. Растения связывают в ходе фотосинтеза в среднем лишь около 1 % энергии света. Животное, съевшее растение, получает запасенную им энергию не полностью. Часть пищи не переваривается и выделяется в виде экскрементов. Обычно усваивается от 20 до 60 % растительного корма. Усвоенная энергия идет на поддержание жизнедеятельности животного. Работа клеток и органов сопровождается выделением тепла, поэтому значительная доля энергии пищи вскоре рассеивается в окружающее пространство. Лишь небольшая часть усвоенной пищи идет на рост, т. е. на построение новых тканей, на запасы в виде отложения жиров. У молодых эта доля несколько больше, чем у взрослых.

    Следовательно, уже на первом этапе происходит значительная потеря энергии из пищевой цепи. Хищник, съевший растительноядное животное, представляет третий трофический уровень. Он получает только ту энергию из накопленной растением, которая задержалась в теле его жертвы в виде прироста. Подсчитано, что на каждом этапе передачи вещества и энергии по пищевой цепи теряется примерно 90 % и только около 10 % переходит к очередному потребителю. Это правило передачи энергии в пищевых связях организмов называют правилом десяти процентов (правилом Линдемана).

    Представителям четвертого трофического уровня (например, хищнику, поедающему другого хищника) достанется только около одной тысячной доли той энергии, усвоенной растением, с которого начиналась пищевая цепь. Поэтому отдельные цепи питания в природе не могут иметь слишком много звеньев, энергия в них быстро иссякает.

    Биологическая продукция экосистем – это скорость создания в них биомассы. Под биомассой (обычно обозначается буквой В) понимают массу тела этих организмов. В сообществах основная доля биомассы обычно приходится на растения – первичные продуценты (автотрофы).

    Продукцию выражают в единицах энергии или вещества, отнесенных к площади или объему (для водных экосистем) за единицу времени (час, сутки, год и т. д.).

    Количество живого вещества, производимого в единицу времени определенным трофическим уровнем или одним из его компонентов, называют валовой продукцией.

    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта