Финансовый менеджмент. Курс лекций "Основы финансового менеджмента"
Скачать 1.44 Mb.
|
Доходность является производным показателем от общей суммы совокупного чистого дохода, произведенного капиталом за определенный период времени, и величины богатства собственника капитала на начало периода. Так как благосостояние на конец периода будет равно сумме его величины на начало периода плюс величина совокупного чистого дохода, полученного собственником за весь за период, формулу расчета доходности можно представить следующим образом: , где индексы 0 и 1 обозначают соответственно начало и конец периода времени. Проблема точного измерения реальной стоимости всего имущества, принадлежащего инвестору, не имеет непосредственного отношения к финансовому менеджменту. Поэтому величина его благосостояния на начало периода принимается равной сумме вложенного им капитала. Формула определения полной доходности за период владения (holding period return – HPR) может быть представлена следующим образом: , (5.1.1) где CF – поток текущих доходов, полученных владельцем от вложенного капитала за период; I0 – первоначальная сумма вложенного капитала (инвестиции на начало периода); I1 – конечная (наращенная) сумма вложенного капитала (инвестиции на конец периода); rC – текущая доходность; rI – доходность прироста капитала (капитализированная доходность); r – полная доходность. Например, владелец квартиры стоимостью 15 тыс. долларов в начале года сдал ее в аренду и получил годовую плату от квартиросъемщика в сумме 1 тыс. долларов США. К концу года стоимость квартиры возросла и составила 17 тысяч долларов США. Полная доходность владения квартирой за год составит 20% (1 + (17 – 15) / 15), в том числе текущая доходность 6,67% (1 / 15), капитализированная доходность 13,33% (2 / 15). Точнее, следует говорить о доходности капитала, вложенного в покупку квартиры. Как следует из формулы (5.1.1), на величину доходности оказывает влияние не только абсолютная сумма полученного дохода, но и величина инвестиций (I0). Иными словами одна и та же абсолютная сумма дохода 1000 рублей будет означать различный уровень доходности для капитала в 10 тысяч и 10 миллионов рублей. В первом случае доходность составит 10% (1 000 / 10 000), а во втором – 0,01% (1 000 / 10 000 000). Относительный показатель доходности элиминирует влияние масштабного фактора и более точно отражает реальную финансово-экономическую эффективность использования вложенных средств, чем абсолютная величина полученного дохода. Доходность всегда относится к конкретному периоду времени. Например, 1 тыс. рублей можно заработать за месяц, а можно и за год. Даже расчет относительного показателя доходности не сделает эти цифры сопоставимыми. Если продолжить пример и предположить, что вложение 10 млн. рублей принесло доход в 1 тыс. рублей за 1 неделю, а инвестирование 10 тыс. рублей обеспечило такой же доход за 6 месяцев, то полученные выше значения доходности будут недостаточно объективны. Для обеспечения сопоставимости этих показателей, их необходимо привести к единой временной базе. В финансах доходность обычно приводится к годовому исчислению, то есть исходные данные аннуилизируются. Сравнивая формулы расчета доходности и формулу годовой процентной ставки (2.2.1), можно заметить их идентичность. И доходность, и процентная ставка отражают темп прироста первоначально вложенных сумм. Рассчитывая доходность, по сути дела определяют величину соответствующей процентной ставки. Существуют различные способы начисления процентов и, соответственно, различные процентные ставки. Наращение по простой и сложной ставкам приводит к различным результатам. Какая конкретно ставка должна использоваться при определении годовой доходности? В финансах принято в качестве измерителя доходности использовать эффективную сложную процентную ставку, то есть годовую ставку, предполагающую однократное в течение года реинвестирование начисленных процентов. Однако для краткосрочных финансовых операций (продолжительностью менее 1 года) допускается применение простой процентной ставки. Так, например, доходность ГКО рассчитывалась по ставке простых процентов (формула 2.2.14) в предположении, что продолжительность года составляет 365 дней. Безусловно, такая неоднозначность осложняет жизнь финансисту, однако возникающие трудности не следует абсолютизировать. Прежде всего необходимо понять, что способ аннуилизации доходности ни в коей мере не влияет на реальные параметры рассматриваемой финансовой операции. Доходность является абстрактным показателем, применяемым для обеспечения сопоставимости и сравнительной оценки различных вложений капитала. Поэтому, сравнивая между собой две инвестиции по уровню их доходности, важно убедиться в сопоставимости методик расчета этих показателей. Вопрос о том, какой из способов расчета лучше или “правильнее” не является самым важным. Необходимо, чтобы для обеих операций использовался один и тот же способ аннуилизации. Продолжая пример, рассчитаем доходность двух вложений различными способами (в обоих случаях продолжительность года составляет 365 дней): а) по эффективной ставке сложных процентов. По формуле (2.2.15) находим: для Р = 10 млн. рублей, S = 10 млн. 1 тыс. рублей, n = 7 / 365 (1 неделя) для Р = 10 тыс. рублей, S = 11 тыс. рублей, n = 6 / 12 (6 месяцев) б) по простой процентной ставке. По формуле (2.2.12) находим: для Р = 10 млн. рублей, S = 10 млн. 1 тыс. рублей, t = 7 дней, K = 365 дней для Р = 10 тыс. рублей, S = 11 тыс. рублей, t = 6 мес., К = 12 мес. Применив формулу эквивалентности простой и сложной процентных ставок (2.2.21), получим аналогичные результаты: для P = 10 млн. рублей ; для Р = 10 тыс. рублей С позиций финансовой теории обоснованным является использование сложной процентной ставки, так как данный метод учитывает возможность реинвестирования начисленных процентов. Но в ряде случаев расчет доходности производится в соответствии с принятыми на данном рынке обычаями. Общим правилом является использование простой процентной ставки для краткосрочных финансовых операций (депозитные сертификаты, казначейские векселя, краткосрочные ссуды и т.п.). Во всех остальных случаях используется эффективная сложная процентная ставка. Следует отметить, что использование эффективной сложной ставки для расчета доходности также не свободно от недостатков. Предположение об однократном реинвестировании начисленных процентов нуждается в обосновании. Более логичным было бы предположение о непрерывной капитализации процентов, то есть расчет доходности по ставке сложных непрерывных процентов. Рассмотрим несколько примеров расчета доходности краткосрочных инвестиций (продолжительностью менее 1 года). Как уже отмечалось, в данном случае применяется ставка простых процентов, поэтому большое значение имеет способ подсчета числа дней в периоде, а также метод определения продолжительности года (временной базы). Подробнее об этом говорилось в параграфе. 2.1.1. По 90-дневному банковскому депозитному сертификату, купленному за 10 тыс. рублей, в конце срока его действия получен доход в сумме 1 тыс. рублей. Фактическая доходность за 90 дней составила 10% (1 000 / 10 000), годовая доходность в предположении, что год равен 360 дням будет равна 40%: Если предположить точную временную базу (t = 365 дней), то доходность операции составит 40,56%. Допустим, что данный сертификат был приобретен дороже номинала – за 10 тыс. 200 рублей и продан через 45 дней за 10 тыс. 800 рублей. Тогда его фактическая годовая доходность (при t = 360) составит 47,06%: Если по условиям сертификата на него начислялись простые проценты из расчета 25% годовых, то сначала следует найти их общую сумму, причитающуюся владельцу за 45 дней. Применив формулу (2.1.3), получим: Тогда общий доход от владения сертификатом в течение 45 дней составит 912,5 рублей (10 800 – 10 200 + 312,5), а полная годовая доходность владения этим инструментом (hpr) 71,57%: Таким образом, рассчитывая фактическую доходность, прежде всего необходимо выявить все доходы, полученные от инвестиции как в форме текущих выплат, так и в виде прироста стоимости инвестиций, а затем разделить их на начальные инвестиции (фактически вложенный капитал). Полученная величина аннуилизируется путем умножения на принятую временную базу и деления на длительность операции. Данное правило полезно помнить при определении доходности финансовых инструментов, продаваемых со скидкой (дисконтом). В этом случае не следует путать учетную ставку, устанавливаемую по данному инструменту (процент скидки) с величиной доходности. Ставка дисконта служит для определения суммы дохода в абсолютном выражении (рублях). Только найдя эту сумму, можно приступать к расчету доходности инструмента. Например, вексель номиналом 50 тыс. рублей продается по курсу 85%, т.е. с дисконтом 15%. Он будет выкуплен через 60 дней по номиналу. Следовательно, через 2 месяца инвестор получит доход в сумме 7,5 тыс. рублей (50 х 0,15). Доходность этой операции составит (при t = 360 дней) 105,88%: То есть, ставка дисконта, установленная по векселю не отражает его фактической доходности, а является номинальной величиной, используемой только для определения абсолютной суммы дохода. Это относится и к случаю, когда ставка дисконта установлена в годовом исчислении. Например, по вышеупомянутому векселю известен его номинал, срок и годовая учетная ставка 60%. Тогда, применив формулу банковского учета (2.1.8), сначала найдем продажную стоимость векселя: Следовательно, фактический доход инвестора составит 5 тыс. рублей (50 000 – 45 000), а фактическая годовая доходность операции – 66,67%: Если известна доходность за период, меньший, чем год (месяц, 40 дней, полугодие и т.д.), то годовую доходность можно определить умножив имеющиеся данные на число периодов в году: доходность за месяц умножается на 12, квартальная доходность – на 4 и т.д. Данный способ аннуилизации применим только в случае использования простой процентной ставки. Например, доходность за 75 дней составила 5%, временная база – 365 дней. Тогда годовая доходность будет равна 24,33% (5 х 365 / 75). Как уже отмечалось выше, способ расчета дохода не влияет на параметры финансовой операции. То есть, фактические денежные потоки, порождаемые операцией, являются входными переменными и не зависят от того, какие арифметические действия выполняет над их величинами финансист, чтобы определить доходность. Поэтому, ничто не мешает финансовому менеджеру рассчитать доходность одной и той же операции различными способами. Для этого следует применить формулы расчета эквивалентных процентных ставок (см. параграф 2.2). В предыдущем примере годовая доходность векселя как ставка простых процентов составила 66,67%. Применив формулу (2.2.21), определим эквивалентную ей сложную процентную ставку: Применив формулу (2.2.29) можно рассчитать годовую доходность по сложной непрерывной ставке (силе роста): То есть, одна и та же операция, приносящая инвестору 5 тыс. рублей дохода на вложенные 45 тыс. рублей через 60 дней, может быть охарактеризована следующими показателями доходности: – по ставке простых процентов (iпр) – 66,67%; – по эффективной сложной процентной ставке (iсл) – 88,17%; – по сложной непрерывной процентной ставке (силе роста δ) – 63,22%. Так как данная операция является краткосрочной, то для ее оценки более приемлем первый показатель доходности (по ставке простых процентов). Однако финансовый менеджер может с успехом использовать и два других измерителя доходности для сравнения с параметрами иных операций, осуществляемых предприятием. 5.2. Определение средней доходности В практике финансовых расчетов часто возникает необходимость расчета средней доходности набора (портфеля) инвестиций за определенный период или средней доходности вложения капитала за несколько периодов времени (например, 3 квартала или 5 лет). В первом случае используется формула среднеарифметической взвешенной, в которой в качестве весов используются суммы инвестиций каждого вида. Вернемся к примеру из предыдущего параграфа с вложением 1000 рублей в два вида деятельности: торговую и финансовую. Можно сказать, что владелец этих денег сформировал инвестиционный портфель, состоящий из двух инструментов – инвестиции в собственный капитал магазина и финансовые (спекулятивные) инвестиции. Сумма каждого из вложений составила 500 рублей. Доходность по первому направлению вложений составила 10%, по второму – 40% годовых. Применив формулу средней арифметической (в данном случае, ввиду равенства весов, можно использовать среднюю арифметическую простую) получим среднюю доходность инвестиций за год, равную 25% ((10 + 40) / 2). Она в точности соответствует полной доходности “портфеля”, рассчитанной в предыдущем параграфе. Если бы владелец изменил структуру своих инвестиций и вложил в торговлю только 300 рублей (30%), а в финансовые спекуляции 700 рублей (70%), то при неизменных уровнях доходности каждого из направлений средняя доходность его “портфеля” составила бы 31% (10 * 0,3 + 40 * 0,7). Следовательно, общую формулу расчета средней доходности инвестиционного портфеля можно представить следующим образом: , где (5.2.1) n – число видов финансовых инструментов в портфеле; ri – доходность i-го инструмента; wi – доля (удельный вес) стоимости i-го инструмента в общей стоимости портфеля на начало периода. Реальный срок вложения капитала может принимать любые значения – от одного дня до многих лет. Для обеспечения сопоставимости показателей доходности по инвестициям различной продолжительности эти показатели приводятся к единой временной базе – году (аннуилизируются). Методика аннуилизации доходности была рассмотрена в предыдущем параграфе. Однако, годовая доходность одних и тех же инвестиций может быть неодинаковой в различные промежутки времени. Например, доходность владения финансовым инструментом (за счет прироста его рыночной цены) составила за год 12%. В течение второго года цена увеличилась еще на 15%, а в течение третьего – на 10%. Возникает вопрос: чему равна средняя годовая доходность владения инструментом за 3 года? Так как годовая доходность суть процентная ставка, средняя доходность за период рассчитывается по формулам средних процентных ставок. В зависимости от вида процентной ставки (простая или сложная) ее средняя величина может определяться как среднеарифметическая, взвешенная по длительности периодов, в течение которых она оставалась неизменной, или как среднегеометрическая, взвешенная таким же образом (см. § 2.2). В принципе возможно применение обоих способов для определения средней за несколько периодов доходности. Например, среднеарифметическая доходность инструмента, о котором говорилось выше, составит за три года 12,33% ((12 + 15 + 10) / 3). В данном случае продолжительность периодов, в течение которых доходность оставалась неизменной (год), не менялась, поэтому используется формула простой средней. Применив формулу средней геометрической, получим rср = 12,315% (((1 + 0,12) * (1 + 0,15) * (1 + 0,1))1/3-1). При незначительной разнице в результатах, техника вычисления среднеарифметической доходности значительно проще, чем среднегеометрической, поэтому довольно часто используется более простой способ расчета. Однако при этом допускается существенная методическая ошибка: игнорируется цепной характер изменения доходности от периода к периоду. Доходность 12% была рассчитана к объему инвестиций на начало первого года, а доходность 15% - к их величине на начало следующего года. Эти величины не равны друг другу, так как в течение первого года инвестиции подорожали на 12%. За второй год они стали дороже еще на 15%, то есть их объем на начало третьего года также отличался от двух предыдущих сумм. Применяя формулу средней арифметической, молчаливо предполагают, что объем инвестиций оставался неизменным в течение всех периодов, то есть по сути рассчитывается средний базисный темп прироста. В данном случае это предположение совершенно неверно, поэтому следует рассчитывать средний цепной темп прироста по формуле средней геометрической, так как начальная сумма инвестиций меняется от периода к периоду. Представим исходные данные примера в табличной форме (табл. 5.2.1). Таблица 5.2.1 Динамика доходности акции за 3 года руб.
Из таблицы видно, что 10% доходности за третий год, по абсолютной величине дохода (12,88 руб.) “дороже” 12% за первый год (12 руб.). Простое арифметическое усреднение неоднородных величин в принципе является бессмысленным занятием, хотя иногда оно дает результаты, близкие к правильным. Среднеарифметическая доходность всегда выше среднегеометрической и эта разница увеличивается по мере усиления разброса исходных показателей. Неправомерность использования средней арифметической становится особенно наглядной, когда наряду с положительными возникают и отрицательные значения доходности. Предположим, что в течение первого года цена акции возросла вдвое, но к концу второго года она вернулась на свое исходное значение (100 руб.). Занесем соответствующие данные в таблицу (табл. 5.2.2). Таблица 5.2.2 Динамика доходности акции за 2 года руб.
По формуле средней арифметической получим, что среднегодовая доходность за весь период составила 25% ((100 – 50) / 2). Очевидно, что это абсолютно неверный результат, так как богатство владельца акции нисколько не изменилось и составило к концу второго года те же самые 100 рублей, что и в начале первого года. Полная доходность за период владения составила 0% ((100 – 100) / 100). Такой же результат получим, применив формулу средней геометрической доходности: ((1 + 1) * (1 – 0,5))1/2 – 1 = 0%. Причина столь грубой ошибки заключается не в изначальной “порочности” средней арифметической, а в том, что в данном случае она применялась не по назначению. Для расчета доходности за каждый отдельный год в качестве величины первоначальных инвестиций бралась новая сумма, включающая в себя реинвестированный доход, полученный за прошлые годы. По умолчанию, для расчета доходности использовалась сложная процентная ставка, поэтому и среднюю доходность за период владения следовало рассчитывать по формуле средней геометрической. Такой подход является общепринятым в финансовой теории и он всегда применяется для операций, длительность которых превышает 1 год. Однако в случае краткосрочных операций (продолжительностью до 1 года) допускается использование простой процентной ставки, среднее значение которой рассчитывается по формуле средней арифметической. В этом случае, доходность за каждый период должна рассчитываться путем деления суммы полученного дохода на одну и ту же величину – инвестиции в данный финансовый инструмент, сделанные в начале первого периода. Предположим, что срок владения акцией составил не 2 года, а 2 месяца. После двукратного увеличения ее стоимости в течение 1 месяца, инвестор решил подержать ее подольше, надеясь на дальнейший рост курса. Однако в следующем месяце цена акции резко упала и вернулась к своей исходной величине – 100 рублей. Решив не испытывать больше судьбу, владелец продал акцию в конце второго месяца за эту цену. Доходность акции, рассчитанная по ставке простых процентов (К = 360 дней), составит: за первый месяц 1200% ((200 – 100) / 100) * 360 / 30); за второй месяц -1200% (отрицательная величина) ((100 – 200) / 100) * 360 / 30). Таким образом, среднеарифметическая доходность будет равна 0 ((1200 – 1200) / 2). Можно сделать вывод, что расчет средней за несколько периодов времени доходности лучше производить по формуле средней геометрической. Вычисление среднеарифметической доходности оправдано лишь в тех случаях, когда доходность за каждый период в отдельности рассчитывается как простая процентная ставка. Это допускается при анализе краткосрочных финансовых операций. Доходность не обязательно должна изменяться каждый год. Один и тот же уровень доходности может наблюдаться в течение ряда лет. В этом случае для расчета средней годовой доходности используется формула средней геометрической взвешенной. В качестве весов используются длительности периодов, в течение которых наблюдался один и тот же уровень доходности. Например, 1 млн. рублей был вложен в собственный капитал предприятия. Чистая прибыль за первый год составила 200 тыс. рублей, за второй – 120 тыс. рублей, в третьем году было получено 264 тыс. рублей чистой прибыли. Ежегодно 100% чистой прибыли реинвестировалось. Рассчитаем среднюю годовую доходность вложения капитала за весь период (табл. 5.2.3). Как видно из таблицы, доходность за первый и за третий годы составила 20% годовых. Следовательно, для расчета средней доходности за три года следует применить среднюю геометрическую взвешенную. Для 10-процентной доходности вес будет равен 1, а для доходности 20% – 2. Подставив эти значения в формулу (2.2.4), получим: Следовательно, данная инвестиция приносила в среднем по 16,57% в год своему владельцу. Капитал предприятия к концу третьего года составил 1 млн. 584 тыс. рублей (1320 + 264). Эквивалентный результат мог бы быть получен при размещении 1 млн. рублей на банковский депозит под эффективную годовую ставку 16,57% (1000000 * (1 + 0,1657)3 = 1584000). Применив формулу среднеарифметической взвешенной, получим: Таблица 5.2.3 Изменение собственного капитала, тыс. руб.
В данном случае нельзя сказать, что эквивалентный результат (1 млн. 584 тыс. рублей) мог бы быть получен путем размещения 1 млн. рублей на трехлетний депозит под простую процентную ставку 16,67%. Начисление простых процентов по этой ставке даст лишь 1 млн. 500 тыс. 100 рублей через 3 года. Это служит еще одним доказательством некорректности использования арифметической средней в подобных вычислениях. Таблица 5.2.4 График выплаты дивидендов тыс. руб.
Во всех вышеприведенных примерах рассматривался только один вид дохода – прирост стоимости капитала. При определении доходности за единичный период (например – год) данный факт не играет существенной роли, так как и прирост капитала и текущий доход абсолютно равноценны для инвестора, и тот и другой одинаково увеличивают его богатство. Однако, при расчете средней доходности за несколько лет необходимо учитывать различия между этими видами дохода. Получая текущий доход, инвестор оставляет неизменной сумму первоначальных инвестиций. Предположим, что вся чистая прибыль, отраженная в таблице 5.2.3, ежегодно изымалась собственником капитала в виде дивидендов (табл. 5.2.4). В этом случае размер инвестированного капитала на начало каждого года оставался неизменным – 1 млн. рублей. Средняя геометрическая доходность за три года составит 19,32% ((1 + 0,2) * (1 + 0,12) * (1 + 0,264))1/3 – 1); среднеарифметическая доходность будет равна 19,47% ((20 + 12 + 26,4) / 3). Для анализа инвестиций, приносящих оба вида дохода (текущий и прирост стоимости) широкое распространение получило использование еще одного показателя средней за ряд периодов доходности. В данной роли выступает многократно упоминавшаяся ранее внутренняя норма доходности (irr). Данный показатель учитывает все текущие доходы за период инвестиций и прирост стоимости капитала в конце этого периода. Он незаменим при выполнении прогнозных расчетов по возвратным инвестициям (долгосрочным кредитам, облигационным займам и т.п.), так как позволяет определять полную доходность инвестиций или доходность к погашению (yield to maturity – YTM). Так же как и внутренняя норма доходности, доходность к погашению представляет собой среднюю эффективную процентную ставку, дисконтирование по которой приравнивает приведенную величину совокупных доходов к сумме первоначальных инвестиций: , где (5.2.2) P – сумма первоначальных инвестиций; CF – поток ежегодных текущих доходов от инвестиций; N – разовая выплата инвестору в конце срока, на который вложен капитал (например, возврат основной суммы кредита); n – общий срок вложения капитала. Являясь средней процентной ставкой, YTM по своему значению может отличаться как от среднеарифметической, так и среднегеометрической доходности, хотя часто она близка последней. Например, вложение ста тысяч рублей на срок 3 года гарантирует инвестору получение ежегодного текущего дохода в сумме 10 тыс. рублей (в конце каждого года) и возврат всей вложенной суммы в конце третьего года. Соответствующий денежный поток может быть представлен следующим образом (табл. 5.2.5). Таблица 5.2.5 Денежный поток от инвестиций тыс. руб.
Очевидно. что как среднеарифметическая, так и среднегеометрическая доходности составят одну и ту же величину – 10%. Использовав данные гр. 5 табл. 5.2.5 и финансовую функцию ВНДОХ электронного табличного процессора MS Excel, получим внутреннюю доходность потока равную также 10%. Несколько изменим структуру ожидаемого денежного потока – в первый год текущий доход составит 0, зато во втором году будет получено 20 тыс. рублей дохода. Среднеарифметическая доходность при этом останется неизменной (10%), средняя геометрическая уменьшится до 9,7% (((1 + 0) * (1 + 0,2) * (1 + 0,1))1/3 – 1), а внутренняя норма доходности составит 9,68%. Это объясняется более поздним поступлением доходов – приведенная стоимость дополнительных 10 тыс. рублей, полученных во втором году, ниже, чем у той же суммы, выплаченной годом раньше. Предположим, что первоначальные инвестиции составят не 100, а только 95 тыс. рублей, а текущий доход поступает равномерно по 10 тыс. рублей в год (табл. 5.2.6). Таблица 5.2.6 Денежный поток от инвестиций тыс. руб.
Среднеарифметическая доходность составит 12,28% ((10,53 * 2 + 15,79) / 3); среднегеометрическая – 12,25% (((1 + 0,1053)2 * (1 + 0,1579))1/3 – 1). Доходность к погашению также возрастет и составит 12,09%. Технические трудности вычисления IRR обусловили разработку упрощенного метода приблизительной оценки величины доходности к погашению. Для этих целей используется следующая формула: (5.2.3) Условные обозначения те же, что и в формуле (5.2.2). Применив ее к данным из табл. 5.2.6, получим: Отклонение от точной величины YTM составило 0,12 процентных пункта (12,09 – 11,97). При более высоких уровнях доходности и более длительных сроках инвестиций, точность расчетов по данной формуле значительно ухудшается. Так, если предположить, что первоначальные инвестиции составили не 95, а 80 тыс. рублей, ежегодный текущий доход равен 30, а не 10 тыс. рублей, и поступать он будет в течение пяти, а не трех лет, то приближенное значение YTM по формуле (5.2.3) составит 42,35%, в то время как точная ее величина равна 46,34% (больше на 3,99 процентных пункта). Любопытно, что значение среднегеометрической доходности составит в этом случае 50,55%, то есть она превысит YTM на 4,21 процентных пункта (50,55 – 46,34). Иными словами, расчет по предлагаемой формуле дает не намного более точный результат, чем вычисление среднегеометрической доходности. В заключение, следует отметить, что ни один из рассмотренных выше показателей средней доходности (арифметическая, геометрическая и ytm) не является наиболее “точным” или “правильным”. Каждый из них имеет четко очерченную сферу своего применения. Средняя арифметическая незаменима при расчете средней доходности инвестиционного портфеля за один и тот же период. Средняя геометрическая является инструментом анализа временных рядов, поэтому ее следует использовать для нахождение средней доходности за несколько смежных периодов. Как правило, подобные задачи возникают при ретроспективном анализе уже совершенных сделок, о которых известны лишь значения их доходности за отдельные периоды. Потребность в расчете YTM появляется при планировании финансовых операций, по которым наряду с текущими доходами ожидается возникновение прироста стоимости вложенного капитала. Вся сумма этого прироста относится на самую крайнюю дату – срок возврата первоначальных инвестиций – отсюда название показателя “доходность к погашению”. |