Курс лекций по нормальной физиологии. Ю. И. Савченков. Красноярск Издво , 2012, 470 с
Скачать 8.6 Mb.
|
22. 2. Механизм вдоха и выдоха Отрицательное давление в плевральной щели. понятие об отрицательном давлении, его величина, происхождение, значение.Внешнее дыхание, т.е. обмен воздуха между альвеолами легких и внешней средой, осуществляется в результате ритмических дыхательных движений. Биомеханика дыхательных движений. Механизм вдоха. Акт вдоха (инспирация) совершается вследствие увеличения объема грудной клетки, а, следовательно, и грудной полости, в трех направлениях - вертикальном, сагиттальном и фронтальном. Это происходит вследствие поднятия ребер и опускания диафрагмы. Поднятие ребер совершается в результате сокращения наружных межреберных мышц, межреберные промежутки при этом расширяются. Объем грудной клетки увеличивается во время вдоха, или инспирации, и уменьшается во время выдоха, или экспирации. Эти дыхательные движения обеспечивают легочную вентиляцию. В дыхательных движениях участвуют три анатомо-функциональных образования: 1) дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха, особенно в центральной зоне; 2) эластичная и растяжимая легочная ткань; 3) грудная клетка, состоящая из пассивной костно-хрящевой основы, которая объединена соединительнотканными связками и дыхательными мышцами. Грудная клетка относительно ригидна на уровне ребер и подвижна на уровне диафрагмы. Известно два биомеханизма, которые изменяют объем грудной клетки: поднятие и опускание ребер и движения купола диафрагмы; оба биомеханизма осуществляются дыхательными мышцами. Дыхательные мышцы подразделяют на инспираторные и экспираторные. Инспираторными мышцами являются диафрагма, наружные межреберные и межхрящевые мышцы. При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола. При глубоком форсированном дыхании в инспирации участвуют дополнительные, или вспомогательные, мышцы вдоха: трапециевидные, передние лестничные и грудино-ключично-сосцевидные мышцы. Лестничные мышцы поднимают два верхних ребра и активны при спокойном дыхании. Грудино-ключично-сосцевидные мышцы поднимают грудину и увеличивают сагиттальный диаметр грудной клетки. Они включаются в дыхание при легочной вентиляции свыше 50 л*мин-1 или при дыхательной недостаточности. В первые месяцы после рождения дыхательные движения осуществляются в основном за счет сокращения диафрагмы. Новорожденные животные погибают после перерезки диафрагмального нерва. У разных людей в зависимости от возраста и пола, одежды и условия труда дыхание осуществляется преимущественно или за счет межреберных мышц (реберный, грудной тип дыхания), или за счет диафрагмы (диафрагмальный, брюшной тип дыхания.) Тип дыхания не является строго постоянным и может приспособляться к условиям данного момента. При переносе тяжестей грудная клетка фиксируется мышцами туловища и межреберий неподвижно вместе с позвоночником, дыхание же становится диафрагмальным. При беременности - преобладает реберный тип дыхания, причем изменятся в основном поперечный размер грудной клетки. Механизм выдоха (экспирации). При вдохе инспираторные мышцы человека преодолевают ряд сил: тяжесть приподнимаемых ребер, эластическое сопротивление реберных хрящей, сопротивление стенок живота и брюшных внутренностей, отдавливающих диафрагму верх. Когда вдох окончен, под влиянием указанных сил ребра опускаются и купол диафрагмы приподнимается. Объем грудной клетки вследствие этого уменьшается, Следовательно, экспирация происходит обычно пассивно, без участия мускулатуры. При форсированном выдохе к этим силам присоединяется сокращение внутренних межреберных мышц, мышц живота и задних зубчатых мышц. Экспираторными мышцами являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота. Последние нередко относят к главным экспираторным мышцам. У нетренированного человека они участвуют в дыхании при вентиляции легких свыше 40 л*мин-1. Движения ребер. Каждое ребро способно вращаться вокруг оси, проходящей через две точки подвижного соединения с телом я поперечным отростком соответствующего позвонка. Во время вдоха верхние отделы грудной клетки расширяются преимущественно в переднезаднем направлении, так как ось вращения верхних ребер расположена практически поперечно относительно грудной клетки (рис. 1, А). Нижние отделы грудной клетки больше расширяются преимущественно в боковых направлениях, поскольку оси нижних ребер занимают более сагиттальное положение. Сокращаясь, наружные межреберные и межхрящевые мышцы в фазу инспирации поднимают ребра, напротив, в фазу выдоха ребра опускаются благодаря активности внутренних межреберных мышц. Движения диафрагмы. Диафрагма имеет форму купола, обращенного в сторону грудной полости. Во время спокойного вдоха купол диафрагмы опускается на 1,5—2,0 см, а периферическая мышечная часть несколько отходит от внутренней поверхности грудной клетки, поднимая при этом в боковых направлениях нижние три ребра. Во время глубокого дыхания купол диафрагмы может смещаться до 10 см. При вертикальном смещении диафрагмы изменение дыхательного объема составляет в среднем 350 мл*см-1. Если диафрагма парализована, то во время вдоха ее купол смещается вверх, возникает так называемое парадоксальное движение диафрагмы. В первую половину выдоха, которая называется постинспираторной фазой дыхательного цикла, в диафрагмальной мышце постепенно уменьшается сила сокращения мышечных волокон. При этом купол диафрагмы плавно поднимается вверх, благодаря эластической тяге легких, а также увеличению внутрибрюшного давления, которое в экспирацию могут создавать мышцы живота. Движение диафрагмы во время дыхания обусловливает примерно 70—80% вентиляции легких. На функцию внешнего дыхания существенное влияние оказывает брюшная полость, поскольку масса и объем висцеральных органов ограничивают подвижность диафрагмы. Изменение объема и давления в легких при дыхании. Легкие отделены от стенок грудной полости плевральной полостью (щелью). При вдохе, когда объем грудной клетки увеличивается, давление в плевральной полости уменьшается (примерно на 2 мм.рт.ст.), объем легких растет и давление в них падает. Поэтому воздух через воздухоносные пути входит (засасывается) в легкие. При выдохе, когда объем грудной клетки и грудной полости уменьшается, давление в плевральной щели немного увеличивается (на 3-4 мм. рт. ст.), растянутая легочная ткань сжимается , в легких повышается давление и воздух выходит из легких. Непосредственные измерения показывают, что давление в плевральной полости во время вдоха на 9 мм, а во время выдоха на 6 мм ниже атмосферного. Следовательно, в плевральной полости оно отрицательно. Альвеолярное давление — давление внутри легочных альвеол. Во время задержки дыхания при открытых верхних дыхательных путях давление во всех отделах легких равно атмосферному. Перенос О2 и СО2 между внешней средой и альвеолами легких происходит только при появлении разницы давлений между этими воздушными средами. Колебания альвеолярного или так называемого внутрилегочного давления возникают при изменении объема грудной клетки во время вдоха и выдоха. Изменение альвеолярного давления на вдохе и выдохе вызывает движение воздуха из внешней среды в альвеолы и обратно. На вдохе возрастает объем легких. Согласно закону Бойля—Мариотта, альвеолярное давление в них уменьшается и в результате этого в легкие входит воздух из внешней среды. Напротив, на выдохе уменьшается объем легких, альвеолярное давление увеличивается, в результате чего альвеолярный воздух выходит во внешнюю среду. Внутриплевральное давление — давление в герметично замкнутой плевральной полости между висцеральными и париетальными листками плевры. В норме это давление является отрицательным относительно атмосферного. Внутриплевральное давление возникает и поддерживается в результате взаимодействия грудной клетки с тканью легких за счет их эластической тяги. При этом эластическая тяга легких развивает усилие, которое всегда стремится уменьшить объем грудной клетки. В формировании конечного значения внутриплеврального давления участвуют также активные силы, развиваемые дыхательными мышцами во время дыхательных движений. Наконец, на поддержание внутриплеврального давления влияют процессы фильтрации и всасывания внутриплевральной жидкости висцеральной и париетальной плеврами. Внутриплевральное давление может быть измерено манометром, соединенным с плевральной полостью полой иглой. Эластическая тяга легких обусловлена двумя факторами: наличием в стенке альвеол большого количества эластических волокон, и поверхностным натяжением пленки жидкости, покрывающей стенки альвеол. Внутренняя поверхность стенки альвеол покрыта нерастворимой в воде тонкой (10-100 ммк) пленкой фосфолипида, называемого сурфоктантом, который стабилизирует силы поверхностного натяжения. Сурфоктант препятствует слипанию альвеол. При отсутствии этого вещества у новорожденных легкие не расправляются. Сурфоктант образуется в т.н. гранулярных пневмоноцитах. Разница между альвеолярным и внутриплевральным давлениями называется транспульмональным давлением. В области контакта легкого с диафрагмой транспульмональное давление называется трансдиафрагмальным. Величина и соотношение транспульмонального давления с внешним атмосферным давлением, в конечном счете, является основным фактором, вызывающим движение воздуха в воздухоносных путях легких. Изменения альвеолярного давления взаимосвязаны с колебаниями внутриплеврального давления. Альвеолярное давление выше внутриплеврального и относительно барометрического давления является положительным на выдохе и отрицательным на вдохе. Внутриплевральное давление всегда ниже альвеолярного и всегда отрицательное в инспирацию. В экспирацию внутриплевральное давление отрицательное, положительное или равно нулю в зависимости от форсированности выдоха. На движение воздуха из внешней среды к альвеолам и обратно влияет градиент давления, возникающий на вдохе и выдохе между альвеолярным и атмосферным давлением. Сообщение плевральной полости с внешней средой в результате нарушения герметичности грудной клетки называется пневмотораксом. При пневмотораксе выравниваются внутриплевральное и атмосферное давления, что вызывает спадение легкого и делает невозможной его вентиляцию при дыхательных движениях грудной клетки и диафрагмы. Значение воздухоносных путей. Непосредственно в газообмене участвует только воздух, заполняющий альвеолы. Объем же воздухоносных путей, которые составляет 120-150 мл, называют объемом вредного пространства - ОВП. Изменение просвета бронхов может существенно менять величину ОВП. Атмосферный воздух, проходя через воздухоносные пути, очищается от пыли, согревается и увлажняется. При поступлении крупных частиц пыли в трахею и бронхи рефлекторно возникает кашель, а при поступлении в нос - чихание. Кашель и чихание - это защитные дыхательные рефлексы, очищающие дыхательные пути от инородных частиц и слизи, которые затрудняют дыхание. |