Курс лекций по нормальной физиологии. Ю. И. Савченков. Красноярск Издво , 2012, 470 с
Скачать 8.6 Mb.
|
33. 2. Слуховой анализатор. МЕХАНИЗМ ВОСПРИЯТИЯ ЗВУКА.Слуховая система — одна из важнейших дистантных сенсорных систем человека в связи с возникновением у него речи как средства межличностного общения и служит для восприятия звука. Звук – это колебания молекул, из которых состоит упругая среда, распространяющие в виде продольной волны давления. Скорость распространения волны в воздухе составляет 335 м/с. Частота звука определяется в герцах – Гц. Звук, образованный одной частотой, называется тоном. Периферический отдел слуховой системы. Звук проникает в слуховую систему через наружное ухо – наружный слуховой проход, ведущий к барабанной перепонке. За барабанной перепонкой начинается среднее ухо, в нем находится воздух. В полости среднего уха находится цепочка подвижно соединенных косточек: молоточек, наковальня, стремечко. Стремечко граничит с внутренним ухом. Энергия звука передается от барабанной перепонки через молоточек, наковальню и стремечко в полость среднего уха, которая соединяется с глоткой с помощью евстахиевой трубы. Внутреннее ухо помещается в каменистой части височной кости вместе с вестибулярным аппаратом. Слуховым органом как таковым является улитка. Улитка состоит из трех, свернутых вместе каналов – барабанной лестницы, средней лестницы, вестибулярной лестницы. Барабанная и вестибулярная лестницы сообщаются в окончании улитки. В основании барабанной лестницы имеется еще одно отверстие, закрытое мембраной, называемое круглым окном. Основная мембрана разделяет барабанную и среднюю лестницы. Утолщение вдоль основной мембраны представляет собой звуковоспринимающий кортиев орган, содержащий рецепторы – волосковые клетки. Общее число волосковых клеток достигает 25 000. Волосковые клетки являются рецепторами второго типа и относятся к механоцепторам. Название «волосковые» они получили оттого, что каждая чувствительная клетка увенчана пучком волосков или ресничек. Одним концом реснички прикреплены к нижней поверхности текториальной мембраны. Рецепция звука во внутреннем ухе. Звук вызывает колебания стремечка. От него энергия передается перилимфе вестибулярной лестницы. Поскольку жидкость является несжимаемой средой, то увеличение давления здесь вызывает отклонение мембраны круглого окна в противоположную сторону. Стремечко также вызывает колебания основной и рейснеровской мембраны. В жидкости появляются волны, движущиеся по направлению вдоль каналов. При этом амплитуда волны неодинакова вдоль канала. Положение максимума зависит от частоты приходящего звука. Ближе к стремечку располагаются максимумы для высоких частот, дальше от стремечка – максимумы для низких частот. В результате максимум амплитуды для каждой частоты в диапазоне слышимости располагается в определенной точке канала. Сенсорные клетки возбуждаются сильнее там, где выше амплитуда. Поэтому разные частоты приходящего звука возбуждают разные звуковоспринимающие клетки. Рис. 60. Схема у литки в разрезе. Колебания основной мембраны и других структур улитки вызывают механические движения ресничек. Микродеформация мембраны рецептора преобразуется в нервный импульс в форме рецепторного потенциала. Образование рецепторного потенциала опосредовано разностью электрических потенциалов между полостями вестибулярной и средней лестниц. Предполагается, что в формировании рецепторного потенциала участвуют ионные токи, возникающие при колебаниях ресничек. Возникающий рецепторный потенциал вызывает выброс медиатора из рецептора, который возбуждает афферентные нервные волокна. Каждое волокно слухового нерва приходит из строго определенного участка улитки, т.е. от строго определенных рецепторов. Поэтому каждое волокно сильнее всего возбуждается от звуков одной, определенной частоты. Длительность звукового стимула кодируется продолжительностью нервной активности, а интенсивность кодируется уровнем активности, т.е. частотой импульсов. Открывания всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилии (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибаются один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала. Электрические явления в улитке. При отведении электрических потенциалов от разных частей улитки обнаружено пять различных феноменов: два из них — мембранный потенциал слуховой рецепторной клетки и потенциал эндолимфы — не обусловлены действием звука; три электрических явления — микрофонный потенциал улитки, суммационный потенциал и потенциалы слухового нерва— возникают под влиянием звуковых раздражений (рис.61). Р
ис. 61. А - Электрические явления в улитке. Реакции, регистрируемые с круглого окна улитки (нижние кривые) в ответ на звук (верхние кривые): тон 300 Гц (1), тон 1000 Гц (2), щелчок (3), тональную посылку 21 кГц (4). М — микрофонный потенциал; Н — нервный компонент (суммарный синхронизированный ответ волокон слухового нерва). Если ввести в улитку электроды, соединить их с динамиком через усилитель и подействовать на ухо звуком, то динамик точно воспроизведет этот звук. Описываемое явление называют микрофонным эффектом улитки, а регистрируемый электрический потенциал назван кохлеарным микрофонным потенциалом. Доказано, что он генерируется на мембране волосковой клетки в результате деформации волосков. Частота микрофонных потенциалов соответствует частоте звуковых колебаний, а амплитуда потенциалов в определенных границах пропорциональна интенсивности звука. Центральный отдел слуховой системы. Центральная часть слуховой системы очень сложна. Возбуждение от волосковых клеток передается в слуховой центр продолговатого мозга – кохлеарные ядра, затем переключается на нейроны промежуточного мозга и далее поступает к нейронам височной области коры больших полушарий в первичную слуховую кору. Путь электрических импульсов от рецепторов к первичной слуховой коре полушарий мозга содержит 3–5 уровней переключения и не менее трех перекрестов. Направление нервных импульсов от рецепторов каждого уха в оба полушария является необходимым условием для определения пространственного места расположения источника звука. Информация, содержащаяся в звуковом стимуле, проходит по различным уровням слухового тракта и многократно записывается в виде нейронного возбуждения. В ходе этого процесса синтеза-анализа различные нейроны выделяют специфические свойства звукового стимула, так что нейроны высших уровней могут возбуждаться специфично на одно-единственное свойство. Поэтому люди с определенной тренировкой слуха способны выявлять чистые тона, амплитуду звука, начало и конец стимула, расположение источника звука и другие характеристики. Формирование способностей по анализу звуков происходит в звуковой области коры. Там одни нейроны отвечают только на начало звука, другие – только на конец. Одни нейроны возбуждаются только при определенной длительности звука либо при повторяющихся звуках. Слуховая система функционирует взаимосвязано с неслуховыми отделами головного мозга, т.е. имеет много входов из других отделов нервной системы. К разным уровням слуховой системы подходят нервные пути из зрительной и моторной областей коры, из мозжечка и ретикулярной формации. Повреждение височных долей мозга затрудняет восприятие речи, пространственную локализацию звука и идентификацию временных характеристик звука. Слуховые ощущения. Человек воспринимает звуковые колебания с частотой 16—20 000 Гц. Этот диапазон соответствует 10—11 октавам. Верхняя граница частоты воспринимаемых звуков зависит от возраста человека: с годами она постепенно понижается и старики часто не слышат высоких тонов. Различение частоты звука характеризуется тем минимальным различием по частоте двух близких звуков, которое еще улавливается человеком. При низких и средних частотах человек способен заметить различия в 1—2 Гц. Встречаются люди с абсолютным слухом: они способны точно узнавать и обозначать любой звук даже при отсутствии звука сравнения. Слуховой порог зависит от частоты приходящего звука. Ухо человека наиболее чувствительно к частотам 2–5 кГц. Громкость звука представляет субъективное восприятие уровня звукового давления. Рис. 62. Область звукового восприятия человека. Зависимость пороговой интенсивности звука (по оси ординат — звуковое давление, дин/см2) от частоты тональных звуков (по оси абсцисс — тональность звуков, Гц). Линия AEFGD — абсолютные пороги, ABCD — пороги болевого ощущения от громких звуков Для восприятия звуковых стимулов имеет большое значение продолжительность звука. Если она меньше 50 мс, то звуки воспринимаются в виде щелчков и их полноценное восприятие невозможно. Слуховая система, как и другие сенсорные системы (кроме боли) способна адаптироваться. Это проявляется в том, что длительное воздействие звука вызывает уменьшение чувствительности и наоборот. Слышимость зависит от частоты и звукового давления. Зона слышимости для молодого здорового человека располагается в диапазоне от 2 до 16 000 Гц. Речевая зона располагается примерно между 250 и 6000 Гц, а УЗД – от 40 до дБ. Минимальную силу звука, слышимого человеком в половине случаев его предъявления, называют абсолютным порогом слуховой чувствительности. Пороги слышимости зависят от частоты звука (рис. 63). Сила звука от разных источников, окружающих человека в природной и производственно-бытовой среде очень различна, и может колебаться от 10 децибелл (шелест листьев при ветре) до 120 децибелл (шум авиационного двигателя). Речь средней громкости имеет силу звука, равную 50–60 децибеллам. Бинауральный слух. Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии бинаурального слуха, или слушания двумя ушами. Для него важно и наличие двух симметричных половин на всех уровнях слуховой системы. Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра. При раздельной стимуляции правого и левого уха через наушники задержка между звуками уже в 11 мкс или различие в интенсивности двух звуков на 1 дБ приводят к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. В слуховых центрах есть нейроны с острой настройкой на определенный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источника звука в пространстве. |