Главная страница

Курс лекций Теплотехника Раздел I. Техническая термодинамика Тема Введение. Основные понятия и определения Введение Термодинамическая система


Скачать 1.05 Mb.
НазваниеКурс лекций Теплотехника Раздел I. Техническая термодинамика Тема Введение. Основные понятия и определения Введение Термодинамическая система
Дата21.12.2018
Размер1.05 Mb.
Формат файлаdoc
Имя файлаLekts_Teplotekhnika.doc
ТипКурс лекций
#61323
страница1 из 7
  1   2   3   4   5   6   7

Курс лекций «Теплотехника»

Раздел I. Техническая термодинамика


Тема 1. Введение. Основные понятия и определения

  • 1.1. Введение

  • 1.2. Термодинамическая система

  • 1.3. Параметры состояния

  • 1.4. Уравнение состояния и термодинамический процесс

Тема 2. Первый закон термодинамики

  • 2.1. Теплота и работа

  • 2.2. Внутренняя энергия

  • 2.3. Первый закон термодинамики

  • 2.4. Теплоемкость газа

  • 2.5. Универсальное уравнение состояния идеального газа

  • 2.6. Смесь идеальных газов

Тема 3. Второй закон термодинамики

  • 3.1. Основные положения второго закона термодинамики

  • 3.2. Энтропия

  • 3.3. Цикл и теоремы Карно

Тема 4. Термодинамические процессы

  • 4.1. Метод исследования т/д процессов

  • 4.2. Изопроцессы идеального газа

  • 4.3. Политропный процесс

Тема 5. Термодинамика потока

Тема 6. Реальные газы. Водяной пар. Влажный воздух

  • 6.1. Свойства реальных газов

  • 6.2. Уравнения состояния реального газа

  • 6.3. Понятия о водяном паре

  • 6.4. Характеристика влажного воздуха

Тема 7. Термодинамические циклы

  • 7.1. Циклы паротурбинных установок (ПТУ)

  • 7.2. Циклы двигателей внутреннего сгорания (ДВС)

  • 7.3. Циклы газотурбинных установок (ГТУ)

Раздел II. Основы теории теплообмена


Тема 8. Основные понятия и определения

Тема 9.Теплопроводность

  • 9.1. Температурное поле. Уравнение теплопроводности

  • 9.2. Стационарная теплопроводность через плоскую стенку

  • 9.3. Стационарная теплопроводность через цилиндрическую стенку

  • 9.4. Стационарная теплопроводность через шаровую стенку

Тема 10. Конвективный теплообмен

Тема 11. Тепловое излучение

  • 11.1. Общие сведения о тепловом излучении

  • 11.2. Основные законы теплового излучения

Тема 12.Теплопередача

  • 12.1. Теплопередача через плоскую стенку

  • 12.2. Теплопередача через цилиндрическую стенку

  • 12.3. Типы теплообменных аппаратов

  • 12.4. Расчет теплообменных аппаратов

  • Литература

1.1 Введение


Теплотехника – наука, которая изучает методы получения, преобразования, передачи и использования теплоты, а также принципы действия и конструктивные особенности тепловых машин, аппаратов и устройств. Теплота используется во всех областях деятельности человека. Для установления наиболее рациональных способов его использования, анализа экономичности рабочих процессов тепловых установок и создания новых, наиболее совершенных типов тепловых агрегатов необходима разработка теоретических основ теплотехники. Различают два принципиально различных направления использования теплоты – энергетическое и технологическое. При энергетическом использовании, теплота преобразуется в механическую работу, с помощью которой в генераторах создается электрическая энергия, удобная для передачи на расстояние. Теплоту при этом получают котельных установках или непосредственно в двигателях внутреннего сгорания. При технологическом - теплота используется для направленного изменения свойств различных тел (расплавления, затвердевания, изменения структуры, механических, физических, химических свойств).

Количество производимых и потребляемых энергоресурсов огромно. По данным Минтопэнерго РФ и фирмы "Shell" [3] динамика производства первичных энергоресурсов даны в таблице 1.1.

Таблица 1.1.

Вид энергоресурсов

Годы

1980

1985

1990

1994

1995

Газ, Гм3, в мире

1620

1981

2413

2250

-

Россия

252

462

641

607,3

595,4

топлива.

















Такими теоретическими разделами являются техническая основы теории теплообмена, в которых исследуются законы превращения и свойства тепловой энергии и процессы распространения теплоты.

Данный курс является общетехнической дисциплиной при подготовке специалистов технической специал

Техническая термодинамика (т/д) рассматривает закономерности взаимного превращения теплоты в работу. Она устанавливает взаимосвязь между тепловыми, механическими и химическими процессами, которые совершаются в тепловых и холодильных машинах, изучает процессы, происходящие в газах и парах, а также свойства этих тел при различных физических условиях.

Термодинамика базируется на двух основных законах (началах) термодинамики:

I закон термодинамики - закон превращения и сохранения энергии;

II закон термодинамики – устанавливает условия протекания и направленность макроскопических процессов в системах, состоящих из большого количества частиц.

Техническая т/д, применяя основные законы к процессам превращения теплоты в механическую работу и обратно, дает возможность разрабатывать теории тепловых двигателей, исследовать процессы, протекающие в них и т.п.

Объектом исследования является термодинамическая система, которой могут быть группа тел, тело или часть тела. То что находится вне системы называется окружающей средой. Т/д система это совокупность макроскопических тел, обменивающиеся энергией друг с другом и окружающей средой. Например: т/д система – газ, находящейся в цилиндре с поршнем, а окружающая среда – цилиндр, поршень, воздух, стены помещения.

Изолированная система - т/д система не взаимодействующая с окружающей средой.

Адиабатная (теплоизолированная) система – система имеет адиабатную оболочку, которая исключает обмен теплотой (теплообмен) с окружающей средой.

Однородная система – система, имеющая во всех своих частях одинаковый состав и физические свойства.

Гомогенная система – однородная система по составу и физическому строению, внутри которой нет поверхностей раздела (лед, вода, газы).

Гетерогенная система – система, состоящая из нескольких гомогенных частей (фаз) с различными физическими свойствами, отделенных одна от другой видимыми поверхностями раздела (лед и вода, вода и пар).

В тепловых машинах (двигателях) механическая работа совершается с помощью рабочих тел – газ, пар.

Величины, которые характеризуют физическое состояние тела называются термодинамическими параметрами состояния. Такими параметрами являются удельный объем, абсолютное давление, абсолютная температура, внутренняя энергия, энтальпия, энтропия, концентрация, теплоемкость и т.д. При отсутствии внешних силовых полей (гравитационного, электромагнитного и др.) термодинамическое состояние однофазного тела можно однозначно определить 3-мя параметрами – уд. объемом (υ), температурой (Т), давлением (Р).

Удельный объем – величина, определяемая отношением объема вещества к его массе.υ = V / m , [м3/кг] , (1.1)Плотность вещества – величина, определяемая отношением массы к объему вещества.ρ = m / V , [кг/м3] , (1.2)

υ = 1 / ρ ; ρ = 1 / υ ; υ • ρ = 1 . (1.3)Давление– с точки зрения молекулярно-кинетической теории есть средний результат ударов молекул газа, находящихся в непрерывном хаотическом движении, о стенку сосуда, в котором заключен газ.Р = F / S ; [Па] = [Н/м2] (1.4)Внесистемные единицы давления:

1 кгс/м2 = 9,81 Па = 1 мм.водн.ст.

1 ат. (техн.атмосфера) = 1 кгс/см2 = 98,1 кПа.

1 атм. (физическая атмосфера) = 101,325 кПа = 760 мм.рт.ст.

1 ат. = 0,968 атм.

1 мм.рт.ст. = 133,32 Па.

1 бар = 0,1 МПа = 100 кПа = 105 Па.

Различают избыточное и абсолютное давление.

Избыточное давлениеи)– разность между давлением жидкости или газа и давлением окружающей среды.

Абсолютное давление (Р)– давление отсчитываемое от абсолютного нуля давления или от абсолютного вакуума. Это давление является т/д параметром состояния.

Абсолютное давление определяется:

1). При давлении сосуда больше атмосферного:Р = Ри + Ро ; (1.5)2). При давлении сосуда меньше атмосферного:Р = Ро + Рв ; (1.6)где Ро – атмосферное давление;

Рвдавление вакуума.

Температура – характеризует степень нагретости тел, представляет собой меру средней кинетической энергии поступательного движения его молекул. Чем больше средняя скорость движения, тем вышетемпература тела.

За т/д параметр состояния системы принимают термодинамическую температуру (Т), т.е. абсолютную температуру. Она всегда положительна, При температуре абсолютного нуля (Т=0) тепловые движения прекращаются и эта температура является началом отсчета абсолютной температуры.

1.4. Уравнение состояния и термодинамический процесс


Основные т/д параметры состояния Р, υ, Т однородного тела зависят друг от друга и взаимно связаня между собой определенным математическим уравнением, который называется уравнением состояния:f (Р, υ, Т) = 0 . (1.7)

Равновесным состоянием называется состояние тела, при котором во всех его точках объема Р, υ и Т и все другие физические свойства одинаковы.

Совокупность изменений состояния т/д системы при переходе из одного состояния в другое называется т/д процессом. Т/д процессы бывают равновесные и неравновесные. Если процес проходит через равновесные состояния, то он называется равновесным. В реальных случаях все процессы являются неравновесными.

Если при любом т/д процессе изменение параметра состояния не зависит от вида процесса, а определяется начальным и конечным состоянием, то параметры состояния называются функцией состояния. Такими параметрами являются внутренняя энергия, энтальпия, энтропия и т.д.

Интенсивные параметры– это параметры не зависящие от массы системы (давление, температура).

Аддитивные (экстенсивные) параметры – параметры, значения которых пропорциональны массе системы (Объем, энергия, энтропия и т.д.).


  1   2   3   4   5   6   7


написать администратору сайта