Главная страница
Навигация по странице:

  • Пути обмена лактата в печени и мышцах.

  • Нарушения углеводного обмена

  • Гипергликемии внегормональные.

  • Гипогликемии внегормональные.

  • Гормональные гипергликемии.

  • 1) Абсолютная недостаточность инсулина

  • 2) Относительная недостаточность инсулина

  • Гормональные гипогликемии

  • 4 модуль. Метаболизм и функции липидов Химия и функции липидов. Переваривание липидов

  • Лекции по биохимии тверь,2012 1 модуль. Строение и свойства белков и ферментов Вводная лекция


    Скачать 0.64 Mb.
    НазваниеЛекции по биохимии тверь,2012 1 модуль. Строение и свойства белков и ферментов Вводная лекция
    АнкорlektsiiBiokh.doc
    Дата22.03.2018
    Размер0.64 Mb.
    Формат файлаdoc
    Имя файлаlektsiiBiokh.doc
    ТипЛекции
    #17046
    страница3 из 10
    1   2   3   4   5   6   7   8   9   10

    Глюконеогенез, цикл Кори. Пентозофосфатный путь

    Пентозофосфатный путь превращения глюкозы (ПФП). ПФП называют также апотомическим (прямым) путем окисления глюкозы или гексомонофосфатным шунтом. ПФП состоит из двух стадий: окислительной и неокислительной.

    1) В окислительной стадии происходит две реакции дегидрирования. Кофермент НАДФ восстанавливается до НАДФН2. Пентозы образуются в результате реакции декарбоксилирования.

    2) Неокислительная стадия может служить для образования гексоз из пентоз. С помощью этой стадии избыток пентоз, превышающий потребности клетки, может быть возвращен в фонд гексоз. Кроме того, в результате реакций неокислительной стадии из пентоз могут образоваться метаболиты гликолиза (фруктозо-6-фосфат и глицеральдегид-3-фосфат). Считают, что ПФП и гликолиз, протекающий в цитозоле, взаимосвязаны и способны переключаться друг на друга. При ряде патологических состояний (гипоксия, ишемия) удельный вес ПФП в окислении глюкозы возрастает .
    Окислительная стадия синтеза пентоз и неокислительная стадия возвращения пентозх в гексозы вместе составляют циклический процесс – пентозофосфатный цикл. За один оборот цикла полностью распадается одна молекула глюкозы.

    Суммарное уравнение пентозофосфатного цикла:
    6 Глюкозо-6-фосфат + 12 НАДФ→6 СО2+ 12 НАДФН2+ 5 глюкозо-6-фосфат
    Пентозофосфатный путь обеспечивает клетку рибозой, необходимой для синтеза

    мононуклеотидов, необходимых для синтеза нуклеиновых кислот и ряда коферментов. НАДФН2 являются донором водорода при синтезе ВЖК и холестерина.

    Наиболее активно ПФП протекает в жировой ткани, молочной железе, коре надпочечников, печени.

    Глюконеогенез – процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Процесс протекает в основном в печени и менее интенсивно в корковом веществе почек, а так же в слизистой оболочке кишечника. Эти ткани могут обеспечивать синтез 80-100 г глюкозы в сутки. На долю мозга при голодании приходится большая часть потребности организма в глюкозе. Это объясняется тем, что клетки мозга неспособны, в отличие от других тканей, обеспечить потребности в энергии за счет окисления жирных кислот. Кроме мозга в глюкозе нуждаются ткани и клетки, в которых анаэробный путь распада невозможен или ограничен, например эритроциты (они лишены митохондрий), клетки сетчатки, мозгового слоя надпочечников и др. Первичные субстраты глюконеогенеза - лактат, аминокислоты, глицерол.

    - Лактат – продукт анаэробного гликолиза. Он образуется в эритроцитах и работающих мышцах.

    - Глицерол – высвобождается при липолизе в жировой ткани в период голодания или при длительной физической нагрузке.

    - Аминокислоты – образуются в результате распада мышечных белков и включаются в глюконеогенез при длительном голодании или продолжительной мышечной работе.

    Большинство реакций глюконеогенеза протекают за счет обратимых реакций гликолиза. 3 реакции гликолиза необратимы, они идут с использованием других ферментов (пируваткарбоксилазы, фосфоенлпируваткарбоксикиназы, фруктозо-1,6-бифосфатазы и глюкозо-6-фосфатазы).

    Образование фосфоенолпирувата (первая необратимая реакция) начинается в митохондриях, пировиноградная кислота превращается в оксалоацетат под действием биотинсодержащего фермента пируваткарбоксилазы (+АТФ). Дальнейшее превращение оксалоацетата возможно только в цитозоле, но мембрана митохондрий непроницаема для оксалоацетата, поэтому он восстанавливается за счет НАДН2 до малата. Малат переносится в цитозоль, где дегидрируется цитоплазматической НАД зависимой дегидрогеназой в оксалоацетат. Образованный оксалоацетат под действием фосфоенолпоруваткарбоксикиназы (ГТФ-зависимой) превращается в фосфоенолпируват.

    Все остальные реакции до образования фруктозо-1,6-бифосфата катализируются ферментами гликолиза. Превращение фруктозо-1,6-бифосфата в глюкозо-6-фосфат (вторая необратимая реакция) катализируется ферментом глюкозо-1,6-бифосфатазой, а образование из глюкозо-6-фосфата глюкозы (третья необратимая реакция) идет под действием фермента глюкозо-6-фосфатазы, после чего свободная глюкоза выходит из клетки в кровь.

    Пути обмена лактата в печени и мышцах.

    Лактат, образованный в анаэробном гликолизе, не является конечным продуктом метаболизма. Лактат, образовавшийся в активно работающих мышцах или клетках с преобладающим анаэробным способом катаболизма глюкозы, поступает в кровь, а затем в печень. В печени отношение НАДН2/НАД ниже, чем в сокращающейся мышце, поэтому лактатдегидрогеназная реакция протекает в обратном направлении, т.е. в сторону образования пирувата из лактата. Далее пируват включается в глюконеогенез, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами. Эту последовательность событий называют «глюкозо-лактатным циклом» или «циклом Кори». Цикл Кори выполняет две важнейшие функции: 1 – обеспечивает утилизацию лактата; 2 – предотвращает накопление лактата и, как следствие этого, опасное снижение рН (лактоацидоз). Часть пирувата, образованного из лактата, окисляется печенью до СО2 и Н2О. Энергия окисления может использоваться для синтеза АТФ, необходимого для реакций глюконеогенеза. Кроме печени другим потребителем лактата служат почки и сердечная мышца, где лактат может окисляться до СО2 и Н2О и использоваться как источник энергии, особенно при физической работе.

    Уровень лактата в крови – результат равновесия между процессами его образования и утилизации. Кратковременный компенсированный лактоацидоз встречается довольно часто даже у здоровых людей при интенсивной мышечной работе. У нетренированных людей лактоацидоз при физической работе возникает как следствие относительного недостатка кислорода в мышцах и развивается достаточно быстро. У пациентов лактоацидоз является следствием выраженной гипоксии и ишемии.
    Нарушения углеводного обмена

    Достаточно полные сведения о характере нарушения у пациента углеводного обмена врач может получить, проана­лизировав его кровь на содержание глюкозы, гликогена, ин­сулина, молочной и пировиноградной кислот, а также, изме­рив в ней активность важнейших ферментов углеводного об­мена, и, прежде всего, диастазы, гликогенсинтазы, лактатдегидрогеназы и некоторых других.

    В повседневной деятельности врач, чаще всего, анализи­рует у пациента либо уровень глюкозы в крови, либо изуча­ет в ней динамику изменения этого показателя после сахар­ной нагрузки (толерантность к углеводам).

    У практически здоровых лиц уровень глюкозы в крови ко­леблется в пределах 3,3—5,5 мМ/л (60—100 мг проц.). Из­менения в содержании глюкозы зависят, с одной стороны, от скорости поступления углеводов в организм, и, с другой стороны, от скорости потребления глюкозы тканями, а у больных — еще от характера и степени нарушения углеводного обмена.

    В медицинской практике повышение уровня глюкозы в крови называют гипергликемией (гиперглюкоземией), а понижение — гипогликемией (гипоглюкоземией). Как же на­учиться использовать исходные данные по содержанию глю­козы в крови для установления характера нарушения углеводного обмена?

    С этой целью все виды изменений уровня глюкозы в кро­ви (гипер-, и гипогликемии) лучше всего подразделить на две группы:

    а) гормональные, т.е. связанные с изменением функции эндокринных желез;

    б) внегормональные причины изменения уровня глюкозы.

    Гипергликемии внегормональные. После приема с пищей большого количества простых сахаров у людей развивается так называемая алиментарная гипергликемия. Механизм ее развития представить нетрудно. Нередко гипергликемия наблюдается после перевозбуждения центральной нервной системы (ЦНС). Это так называемая эмоциональная гипергликемия. Если уровень глюкозы в крови поднимается выше 10 мМ/л — глюкоза преодолевает почечный барьер и выделяется из организма с мочой. Развивается глюкозурия. Повышение содержания глюкозы в крови, после приема с пищей избытка углеводов, внутривенного их введения или эмоционального возбуждения, может наблюдаться и у здоровых лиц, и у больных. Различие заклю­чается в том, что у последних гипергликемия выражена силь­нее, сохраняется она значительно дольше, и больные нередко теряют с мочой глюкозу. Для уточнения механизма на­рушения углеводного обмена у пациентов, в этих случаях определяют тип гликемической кривой после сахарной на­грузки. Важно помнить, что, если у субъекта по каким-либо причинам гипергликемия возникает часто — это опасно для здоровья. Развивается перенапряжение инсулярного аппарата. Это способствует развитию сахарного диабета, атеросклероза и ишемической болезни сердца (ИБС). Вот поче­му важно ограничивать в диете людей долю углеводов и по­требление с пищей, особенно рафинированных сахаров.

    Внегормональные гипергликемии наблюдаются также при заболевании печени, почек, менингитах, энцефалитах, шоковых состояниях, травмах ЦНС.

    Гипогликемии внегормональные. Они наблюдаются у лю­дей значительно реже — при голодании, длительной физи­ческой нагрузке, у беременных. Значительно понижается уро­вень глюкозы в крови у детей при рождении. Важно помнить, что у недоношенных детей, после рождения, уровень глюко­зы в крови может падать ниже критических величин (2,0—2,5 мМ/л), что крайне опасно для здоровья и жизни. Для нормализации обмена углеводов в этот период можно реко­мендовать дополнительные введения глюкозы.

    Гормональные гипергликемии.

    У животных уровень глю­козы в крови повышают практически все гормоны, за исклю­чением инсулина. Установлено, что инсулин облегчает транспорт глюкозы через клеточные мембраны, активирует ферменты катабо­лизма этих веществ, и, главное, способствует их превраще­нию в гликоген. Развитие патологии, как правило, связано с формированием относительной или абсолютной недостаточ­ности инсулина в организме.

    1) Абсолютная недостаточность инсулина наблюдается в тех слу­чаях, когда по ряду причин возникает недостаток гормона в крови. У пациента развивается диабет I типа (инсулинзависимый).

    2) Относительная недостаточность инсулина наблюдается, когда по ряду причин не реализуется действие инсулина (например, когда нарушается чувствительность рецепторов к инсулину), что приводит к развитию диабета II типа.

    Во всех названных случаях понижается гипогликемическое действие инсулина (транспорт глюкозы через мембраны клеток, катаболизм и превращение глюкозы в гликоген, липиды и другие, биологически важные соединения). В крови от этого повышается содержание глюкозы. В клетки она не поступает, и они испытывают энергетический голод. В связи с этим, клетки «информируют» регуляторные механизмы организма о том, что им не хватает глюкозы. Включаются компенсаторные механизмы, действием которых может повыситься уровень глюкозы в крови и тканях. Ведущим среди них является процесс глюконеогенеза, и, прежде всего образование глюкозы из аминокислот. Но и эта, вновь синтезированная, в основном в печени, и выделенная в кровь глюкоза, не попадает в цитоплазму клеток, не катаболизируется в силу недостаточности инсулина. В конечном итоге в крови еще больше повышается уровень глюкозы. Нарастет явление глюкозурии. В тяжелых случаях сахарного диабета уровень глюкозы в крови у больных поднимается выше 20—25 мМ/л. В моче содержание глюкозы может достигать 5 %. Учитывая, что при сахарном диабете резко возра­стает диурез (до 10 литров мочи в сутки) нетрудно подсчи­тать, какое количество глюкозы теряют больные сахарным диабетом. Для покрытия потребности клетки в энергии в ней усиливается катаболизм жиров и, как результат, образование в повышен­ных количествах кетоновых тел — ацетоуксусной, β-окси-масляной кислот и ацетона. Развивается кетонемия, а затем — кетонурия. Во выдыхаемом больными воздухе ощущается запах ацетона, напоминающий запах моче­ных яблок. Таковы молекулярные механизмы нарушений угле­водного обмена при сахарном диабете.

    В нормализации углеводного обмена при сахарном диабете ведущую роль играет инсулин и диета с ограниченны содержанием простых сахаров.

    Гипергликемии гормональные наблюдаются также при нарушении функциональной активности других эндокринных желез, как правило, при их гиперфункции. Среди гормональных причин, вызывающих гипергликемию, следует особо вы­делить так называемый стероидный диабет. Наблюдается он у людей с избыточным содержанием глюкокортикоидных гормонов в крови. Повышение содержания последних может быть следствием либо гиперфункции (гиперсекреции) коры надпочечников при наличии в ней опухоли, или даже быть результатом введения с лечебной целью адренокортикотропных или кортикостероидных гормонов. Повышение уровня глюкозы в крови при стероидном диабете объясняется уси­лением скорости глюконеогенеза под влиянием глюкокорти­коидных гормонов. Метаболизм сахаров в этих случаях мож­но восстановить отменой стероидных гормонов и нормализа­цией функциональной активности коры надпочечников.

    Повышается уровень глюкозы в крови при гиперсекреции катехоламинов (в результате усиления мобилизации гликогена), тиреоидных гормонов, глюкагона, а также многих других гормонов.

    Гормональные гипогликемии. Они наблюдаются чаще всего, как результат введения в организм завышенных доз ин­сулина при лечении больных сахарным диабетом или ишемической болезнью сердца, а также при гиперплазии остров­ков Лангерганса у больных с опухолью поджелудочной же­лезы.

    Следует отметить, что патология в углеводном обмене может также формироваться по причине нарушения их об­мена на промежуточных этапах превращения. Чаще всего эти нарушения являются следствием изменения активности одного фермента, лимитирующего какой-либо путь превра­щения углеводов. Нарушения в обмене углеводов на проме­жуточных этапах их превращения ведут к развитию таких заболеваний, как гликогеновые болезни, гликозидозы, галактоземии и некоторых других заболеваний.

    Гликогеновые болезни. Они являются результатом полно­го отсутствия в организме или недостаточной активности ферментов, осуществляющих мобилизацию гликогена, а имен­но фосфорилазы и киназы фосфорилазы. Известны несколь­ко типов гликогенозов. Во всех случаях заболевания в клет­ках у больных чрезмерно повышается содержание гликоге­на, так как он при этом частично или полностью не разру­шается.

    Если снижается активность ферментов не распада, а био­синтеза гликогена, то, наоборот, развиваются агликогенозы. В клетках у таких больных понижается сначала содержа­ние гликогена, а затем и глюкозы.

    Широко известны в настоящее время гликозидозы — бо­лезни нарушения обмена гликопротеидов и гликолипидов, т. е. основных компонентов межклеточного вещества соеди­нительной ткани и клеточных мембран. Болезни эти разви­ваются в связи с дефектом лизосомальных ферментов, раз­рушающих в клетках полисахариды. Гликогеновые болезни и гликозидозы могут стать причиной смерти в раннем воз­расте.

    С патологией углеводного обмена на промежуточных эта­пах их превращения связано развитие галактоземии. Наблю­даются эти заболевания при отсутствии или недостаточной активности фермента гексозо-1-фосфат уридилтрансферазы. В крови таких больных уровень галактозы может повышать­ся до 10—16 мМ/л. Чаще болезнь развивается у детей. Это приводит к развитию умственной отсталости, помутнению хрусталика, возможны и летальные исходы заболевания.

    У некоторых жителей Северной Европы и Африки с воз­растом понижается лактазная активность клеток кишечного эпителия. Поступающая с пищей лактоза вследствие этого не переваривается, что ведет к диарее, особенно после при­ема с пищей молока. При исключении из диеты молока, диарея, как правило, прекращаются.
    4 модуль. Метаболизм и функции липидов

    Химия и функции липидов. Переваривание липидов

    Липиды — это группа органических соединений, входящих в состав животных и растительных тканей, как правило, нерастворимых в воде и полярных растворителях, но хорошо растворимых в неполярных средах, например, хлороформе, эфире и др. К липидам относят нейтральные жиры (триглицериды), фосфолипиды, стерины и стероиды, цереброзиды, воска и др. В зависимости от химического состава и строения их принято делить на два класса — простые и сложные липиды. Молекулы простых липидов состоят из остатков жирных кислот и спиртов. Например, триглицериды состоят из глицерина и высших жирных кислот. В составе сложных липидов имеются дополнительные компоненты — фосфорная кислота, этаноламин, холин (глицерофосфолипиды), углеводы (цереброзиды, ганглиозиды). В группу сложных липидов включены также стериды - эфиры холестерина и высших жирных кислот.

    Функции липидов в организме животных разнообразны. Они, прежде всего, представляют собой наи­более концентрированный источник энергии. При окислении липиды дают организму в два раза больше энергии, чем углеводы или белки. В организме из липидов образуются биологически активные соединения (стероидные гормоны, витамины группы Д, желчные кислоты, простагландины и др.). Липиды служат растворителями для жирорастворимых витаминов (А, Д, Е, К, F) и витаминоподобных веществ (коэнзим Q). Являясь структурными компонентами биологических мембран, липиды оказывают значительное влияние на их проницаемость.

    Основная масса липидов, которая содержится в пище человека, представлена нейтральными жирами (триглицеридами), фосфолипидами, стеринами и стероидами. Источником всех этих липидов являются продукты животного и растительного происхождения. Липидам свойственна видовая специфичность, т. е. в зависимости от источника, они различаются по составу и соотношению входящих в них высших жирных кислот. Например, бараний жир содержит насыщенные жирные кислоты в гораздо большем количестве, чем сливочное или подсолнечное масла. Все они отличаются от липидов организма человека. По этой причине липиды, которые мы принимаем с пищей, прежде чем всосаться из кишечника в кровь, подвергаются перевариванию. В процессе переваривания происходит потеря видовой специфичности липидов пищи и образуются мономеры, не имеющие видовой специфичности. Основное место переваривания липидов — тонкий кишечник. Гормоны, способствующие перевариванию липидов: холецистокинин – стимулирует синтез и секрецию энзимов из поджелудочной железы; секретин – стимулирует секрецию бикарбонатов, необходимых для создания оптимального рН=8 для действия липолитических ферментов. Переваривание происходит на границе раздела фаз вода/жир. Способствуют перевариванию желчные кислоты, они участвуют в эмульгировании липидов. Механизм переваривания липидов – гидролиз. Гидролизуются липиды в кишечнике под действием нескольких ферментов — липаз, фосфолипаз и холестеролэстераз. Конечные продукты гидролиза – β-моноацилглицерол, высшие жирные кислоты, холин, серин, этаноламин, углеводы, глицерин, фосфорная кислота, холестерин. Всасывание продуктов гидролиза осуществляется в проксимальном отделе тонкого кишечника. Хорошо растворимые в воде продукты переваривания липидов – глицерин, азотсодержащие молекулы, фосфорная кислота, жирные кислоты с короткой углеводородной цепью – свободно всасываются. Жирные кислоты с длинной углеводородной цепью (более 10 «С»), β-моноацилглицерол, холестерин всасываются с помощью желчных кислот в виде мицелл. Далее из продуктов гидролиза в стенке кишечника будут сформированы новые липиды, свойственные организму человека. Этот процесс называется ресинтез липидов. Ресинтезированные липиды переносятся по крови к тканям в составе хиломикронов и ЛПОНП (в малом количестве). Ассимиляция липидов тканями осуществляется при участии липопротеинлипазы. Этот фермент осуществляет гидролиз триглицеридов в составе хиломикронов, в результате чего продукты данного гидролиза глицерин и жирные кислоты поступают в ткани, где из них формируются липиды, свойственные данному виду ткани.
    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта