Лекции по биохимии тверь,2012 1 модуль. Строение и свойства белков и ферментов Вводная лекция
Скачать 0.64 Mb.
|
Липопротеины (ЛП) плазмы крови. В плазме крови присутствуют такие липиды, как триглицериды, фосфолипиды, холестерин и его эфиры. Все они либо полностью нерастворимы, либо плохо растворимы в плазме крови. Они связываются с белками в самых различных соотношениях, и из них формируются липопротеиновые комплексы, способные растворяться в водной среде. Внутри комплекса располагаются неполярные триглицериды и эфиры холестерина под оболочкой, образованной гидрофильными участками белков и полярными головками молекул фосфолипидов. В водном растворе гидрофильные части фосфолипидов и белков ионизируются, и на поверхности липопротеинового комплекса формируется электрический заряд. Липопротеины плазмы крови классифицируют по плотности (скорости флотации) и по электрофоретической подвижности на 4 группы: хиломикроны (ХМ, γ-ЛП)), липопротеины очень низкой плотности (ЛПОНП, пре-β-ЛП), липопротеины низкой плотности (ЛПНП, β-ЛП), липопротеины высокой плотности (ЛПВП, α-ЛП). Наиболее богаты триглицеридами хиломикроны, холестерином – β-ЛП (ЛПНП), фосфолипидами — α-ЛП (ЛПВП). Различны у них и функциональные свойства. ХМ, ЛПОНП и ЛПНП — обеспечивают транспорт липидов из печени и тонкого кишечника к другим тканям. ЛПВП, наоборот, извлекают липиды из клеток (в том числе, из стенки сосуда) и переносят их в печень для различных метаболических превращений. Структурные липопротеины. Под ними обычно подразумевают ЛП биологических мембран. Соотношение белков и липидов в биологических мембранах колеблется в широких пределах. Например, во внутренней мембране митохондрий содержится 80% белков и 20% липидов. В миелиновых мембранах клеток мозга, наоборот, — 80% липидов и только 20% белков. Липидная часть мембран представлена различными классами липидов. Большую их часть составляют фосфолипиды, меньшую — сфинголипиды и холестерин. Триглицериды присутствуют лишь в следовых количествах. Белки, входящие в состав мембран, значительно отличаются друг от друга по составу, функциональной активности и характеру взаимодействия с другими компонентами мембран. Строение мембран. Модели мембран: а) модель мембраны типа сэндвича (модель Даниэлли и Даусон): фосфолипидный бислой, пронизанный порами, выстланными белком. б) жидкостно-мозаичная модель (Д. Сингер и Г. Никольсон). В своем большинстве мембраны асимметричны, т. е. их внутренняя и наружная стороны неравнозначны, с точки зрения как строения, так и биологической функции. Например, транспортные системы в мембранах действуют, как правило, только в одном направлении: перемещают одни вещества наружу, другие, наоборот, вовнутрь. Через мембрану возможен перенос веществ по законам диффузии, активного транспорта, в том числе, и против градиента концентрации. Такой перенос осуществляется с помочью белков — переносчиков, обладающих ферментативной активностью. Он требует затраты энергии, переносить вещество приходится против действия осмотических сил. Источником энергии чаще всего служат АТФ и (или) электрохимический потенциал клетки. Липолиз, окисление жирных кислот. Метаболизм кетоновых тел Под катаболизмом липидов мы должны подразумевать всю совокупность химических реакций распада липидов и образования из них более простых молекул вплоть до углекислого газа и воды, а также энергии, аккумулированной в молекулах АТФ. Это основной путь катаболизма липидов. Липолиз - мобилизация липидов из жировой ткани, стимулируется адреналином (при стрессе и физической нагрузке) и глюкагоном (при голодании), когда необходима организму энергия. Эти гормоны активируют по каскадному механизму (гормоны – рецептор – аденилатциклаза – цАМФ – протеинкиназа – триацилглицерол-липаза) регуляторный фермент триацилглицерол-липазу. Продукты липолиза триацилглицеролов в жировой ткани (глицерин и ВЖК) далее подвергаются окислению. В цитоплазме клеток глицерин в анаэробных условиях распадается до лактата, а в аэробных — до ацетил-КоА и далее окисляются в ЦТК. Высшие жирные кислоты окисляются в митохондриях. Однако мембрана этих субклеточных образований непроницаема для них. Переносятся они в митохондрии с помощью специального энзима-переносчика при участии карнитина. Там ВЖК распадаются до ацетил-КоА в ходе -окисления, который затем окисляется в цикле трикарбоновых кислот до углекислого газа и воды. Процесс окисления одной молекулы ацетил-КоА в ЦТК сопряжен с переносом протонов и электронов по цепи биологического окисления и фосфорилированием 12 молекул АДФ. В целом, при полном окислении, например, только одной молекулы пальмитиновой кислоты в клетке образуется 129 (131-2) молекул АТФ. При окислении ненасыщенных жирных кислот происходит: изменение их цис-конформации в транс-форму, перенос двойной связи, а далее присоединение воды по месту разрыва двойной связи и -оксиление. Количество образуемых АТФ при этом уменьшается.. При окислении жирных кислот с нечетным числом атомов углерода в последнем цикле образуются молекулы ацетил КоА и пропионил КоА, который имеет 3 углеродных атома. Пропионил –КоА превращается в сукцинил-КоА и далее окисляется в ЦТК. При недостатке энергии в клетках происходит образование кетоновых тел (ацетоацетат, -гидроксибутират, ацетон) . Они синтезируются только в митохондриях печени, используются тканями мозга, скелетных мышц, сердца и почек, но печенью как источник энергии не используются. Биосинтез кетоновых тел происходит из ацетил-КоА. Ацетон образуется при высоких концентрациях кетоновых тел и удаляется из организма с мочой и выдыхаемым воздухом, как источник энергии он не используется. При окислении ацетоацетата и -гидроксибутирата в тканях мозга, сердца и скелетных мышц и почек образуется 23 и 26 АТФ соответственно. Содержание кетоновых тел в плазме составляет 0,2-0,6мМ/л - в норме, и повышается до 20 мМ/л - при патологиях (сахарном диабете, голодании, когда усиливается β-окисление ВЖК и снижается скорость окисления ацетил-КоА в ЦТК) в результате чего формируются кетонемия, кетонурия, кетоз. Катаболизм фосфолипидов в тканях происходит при участии тканевых фосфолипаз (А1, А2, С, D). Конечными продуктами распада фосфолипидов являются глицерин, ВЖК, фосфорная кислота, азотсодержащие молекулы, инозитол. Действие фосфолипазы А2 приводит к образованию лизофосфолипидов. Биосинтез жирных кислот, фосфолипидов, триглицеридов Биосинтез высших жирных кислот — это не обратный процесс β-окисления. Он имеет ряд особенностей. Первая особенность заключается в том, что жирные кислоты собираются не из ацетил-КоА, а из трехуглеродистых фагментов — малоновой кислоты, связанной с КоА. В ходе сборки жирной кислоты малонил-КоА теряет карбоксильную группу и цепь жирной кислоты за один цикл нарастает на 2 атома углерода. Вторая важная особенность биосинтеза ВЖК заключается в том, что цепь жирной кислоты удлиняется с помощью специального ацилпереносящего белка (АПБ). Третья особенность биосинтеза ВЖК — коферментом редуктаз являются не ФАД или НАД, а НАДФН2. Четвертая особенность этого процесса — биосинтез высших жирных кислот происходит в цитозоле, а не в митохондриях. Биосинтез жирных кислот начинается с образования малонил-КоА из ацетил-КоА при участии фермента ацетил-КоА-карбоксилазы. Далее молекулы ацетил-КоА и малонил-КоА присоединяются к мультиэнзимному комплексу, содержащему АПБ и проходят ряд последовательных реакций конденсации, восстановления и дегидратации через стадии образования ацетоацетил-АПБ, β-гидроксибутирил-АПБ, кротонил-АПБ, бутирил-АПБ. Количество циклов биосинтеза жирной кислоты зависит от числа углеродных атомов. Образовавшиеся жирные кислоты при участии глицерина превращаются в триглицериды, которые могут откладываться в жировых депо или использоваться с другой целью. Путь биосинтеза триглицеридов в тканях протекает, в основном, через образование глицерол-3-фосфата. Далее глицерол-3-фосфат присоединяет 2 молекулы ацил-КоА (активированной жирной кислоты), с образованием фосфатидной кислоты. Далее происходит дефосфорилирование фосфатидной кислоты и образование диглицерида, который затем эстерифицируется третьей молекулой ацил-КоА. Другой вариант биосинтеза триглицеридов возможен из метаболита гликолиза - диоксиацетон-3-фосфата. При участии фермента глицерол-3-фосфатдегидрогеназы он превращается в глицерол-3-фосфат, а далее следуют реакции биосинтеза триглицеридов, описанные выше. Эндогенные триглицериды транспортируются в составе ЛПОНП. Фосфолипиды синтезируются из фосфатидной кислоты или диглицерида при участии цнтидинтрифосфата (ЦТФ) и таких азотсодержащих молекул как серии, этаноламин, холин и др. Нарушения синтеза фосфолипидов могут привести к жировой инфильтрации печени, поскольку фосфатидная кислота и диглицерид являются общими промежуточными продуктами для синтеза фосфолипидов и триглицеридов. Одной из причин нарушения синтеза фосфолипидов может быть недостаток в организме азотсодержащих молекул, особенно холина и метионина. Липотропные факторы – вещества, участвующие в биосинтезе фосфолипидов и предотвращающие жировую инфильтрацию печени. К ним относятся холин, этаноламин, серин, инозитол, метионин, пангамовая кислота (витамин В15), S-метилметионин (витамин U), витамины В6, В9, В12. Жировая инфильтрация печени – дистрофические изменения печеночной паренхимы, обусловленные избыточным накоплением в гепатоцитах триглицеридов вследствие нарушения синтеза глицерофосфолипидов и липопротеинов. Процесс развивается при сахарном диабете, токсических воздействиях на печень, нарушении питания. Метаболизм холестерина. Липопротеины Холестерин поступает в организм с пищей и синтезируется в организме. Транспорт холестерина пищи и эндогенного холестерина к тканям осуществляется с участием ЛПОНП и ЛПНП. При участии фермента липопротеинлипазы в плазме крови происходит гидролиз триглицеридов из ЛПОНП и образование ЛПНП. ЛПНП переносят холестерин к тканям из печени. Обратный транспорт холестерина из тканей к месту его дальнейшей трансформации (печень) и удаления из организма осуществляется ЛПВП при участии фермента ЛХАТ (лецитин-холестерол-ацил-трансферазы). Основной путь удаления холестерина - его окисление в желчные кислоты. Часть холестерина удаляется с кожным салом, каловыми массами. Холестерин синтезируется из ацетил-КоА. Процесс биосинтеза холестерина включает стадию образования мевалоновой кислоты, которая превращается через ряд промежуточных продуктов в сквален. Сквален подвергается циклизации и через ряд соединений превращается в холестерин. В организме холестерин используется для построения клеточных мембран, синтеза стероидных гормонов, витаминов группы Д, желчных кислот. Регуляция биосинтеза холестерина зависит от активности фермента, катализирующего реакцию синтеза мевалоновой кислоты. Основная доля холестерина удаляется из организма в виде желчных кислот, некоторое количество выделяется в кишечник в неизменном виде, или как вторичные желчные кислоты, под действием ферментов бактерий там восстанавливается в копростанол и холестанол, выводимых с фекалиями. Небольшая часть холестерина превращается в стероидные гормоны и в виде их конечных метаболитов выделяется с мочой. Известно, что липиды, как простые, так и сложные, нерастворимы в водной среде сыворотки крови. Присутствуют они в ней и перемещаются от одного органа к другому в составе липопротеиновых комплексов, неравнозначных по своему химическому составу и строению. В связи с этим липопротеины сыворотки крови классифицируют: а) по плотности — на хиломикроны (ХМ), липопротеины очень низкой плотности (ЛПОНП), липопротеины низкой плотности (ЛПНП), липопротеины высокой плотности (ЛПВП); липопротеины промежуточной плотности (ЛППП, флотирующие липопротеины), б) по электрофоретической подвижности — липопротеиды низкой плотности называют -липопротеины (-ЛП), липопротеины очень низкой плотности — пре-в-липопротеины (пре--ЛП); липопротеины высокой плотности — -липопротеины (-ЛП), хиломикроны – -ЛП. Хиломикроны (ХМ) — липопротеиновые комплексы, богатые липидами (98—99%) и, прежде всего, триглицеридами (85—94%) и крайне бедны белком (менее 2%). По этой причине при электрофорезе они остаются на линии старта. Образуются ХМ в клетках тонкого кишечника из липидов пищи, после их переваривания в желудочно-кишечном тракте и ресинтеза. Следовательно, переносят они, в основном, экзогенные триглицериды пищи. Липопротеины очень низкой плотности (ЛПОНП) (пре--ЛП). В составе этих липопротеиновых комплексов находится еще много липидов (82—88%) и, особенно, триглицеридов (55—65%). Повышается в них процент содержания белков (12—18%). При электрофорезе они располагаются сразу зa ХМ, но перед липопротеинами низкой плотности, поэтому еще их называют пре--липопротеинами (пре--ЛП). Синтезируются ЛПОНП в печени и в небольшом количестве в кишечнике. Они переносят, в основном, эндогенные триглицериды. Липопротеины низкой плотности (ЛПНП). В их составе относительно много холестерина (40—60%), повышается и доля белков (20—24%). По этой причине при электрофорезe они передвигаются быстрее, чем пре--липопротеины и их называют -липопротеинами (-ЛП). ЛПНП образуются из ЛПОНП при модификации последних в плазме крови при участии липопротеинлипазы. Они переносят холестерин к тканям. Липопротеины высокой плотности (ЛПВП). Эти липопротеиновые комплексы наиболее богаты белками (45—50 %) и относительно бедны липидами (триглицеридов 3—6%, холестерина 17—23%, фосфолипидов 20—30%). При электрофорезе они передвигаются с наибольшей скоростью. Их называют -липопротеинами (-ЛП). Синтезируются они в печени и выполняют транспортную функцию — переносят катаболизируемые липиды, в основном эфиры холестерина, с поверхности клеток различных тканей к печени, где они окисляются до конечных продуктов (желчных кислот). Липопротеины промежуточной плотности (ЛППП, флотирующие липопротеины) образуются в плазме крови и представляют собой продукт неполного превращения ЛПОНП в ЛПНП. Регуляция и нарушения липидного обмена Пути превращения липидов в организме представляют собой сложную совокупность большого числа химических pеакций. Их скорость и направление определяются, прежде всего, доступностью субстратов, наличием ферментов и кофакторов, активностью энзимов и удалением конечных продуктов из среды, где совершаются эти реакции. Доступность субстрата — это наиболее простой способ регуляции обмена веществ. Липиды пищи, например, поступая в организм в избытке, стимулируют в клетке реакции катаболизма этих соединений и ингибируют биосинтез липидов из углеводов и белков. При голодании, вследствие недостатка субстратов (азотистые основания, глицерин, глицерофосфат, АТФ и др.), скорость биосинтеза жиров снижается. Если в период голодания в организм ввести углеводы, то последние в клетках начнут окисляться с большей скоростью, в результате в цитоплазме клеток начнет повышаться содержание ацетил-КоА, глицерофосфата, НАДФН2, АТФ и других компонентов, необходимых для образования жиров. Помимо углеводов скорость биосинтеза липидов повышают белки, принятые с пищей в избытке. Из сказанного становится совершенно очевидно, что введением в организм с пищей различных субстратов (продуктов) мы можем регулировать скорость окисления и биосинтезa липидов, переключать метаболизм в клетке с одного вида обмена на другой в благоприятном для органов и тканей на данный момент направлении. Регуляция скорости обмена липидов доступностью кофакторов (КоА, НАД, НАДФ и др.), витаминов (биотина, карнитина и др.) осуществляется аналогичным образом. Например, регуляция скорости окисления и биосинтеза липидов в огромной степени зависит от проницаемости клеточных мембран, наличия и активности молекул, обеспечивающих их перенос (например, наличия карнитина, АТФ, необходимых для транспорта высших жирных кислот через мембрану митохондрий). Регуляция скорости обмена липидов активностью ферментов — это наиболее сложный и трудный для понимания процесс. Осуществляется этот способ регуляции по двум направлениям. Быстрый способ регуляции (действует уже через несколько минут или даже секунд после поступления сигнала) связан с изменением физико-химических свойств среды, окружающей фермент (рН, ионной силы раствора, наличия субстратов, активаторов и ингибиторов фермента и других причин). Эти изменения немедленно отражаются на структуре фермента, его активного и аллостерического центров. Например, биосинтез высших жирных кислот лимитируется активностью ацетил- КоА-карбоксилазы, аллостерический фермент, который катализирует образование малонил-КоА. Положительными модуляторами его являются цитрат и АТФ. Накопление цитрата в клетке служит сигналом, что цикл трикарбоновых кислот «перегружен топливом», и избыток ацетил-КоА необходимо направить на биосинтез жирных кислот, что осуществляется немедленно. Ингибитором этого фермента являются, прежде всего, сами молекулы высших жирных кислот. Более медленный способ регуляции метаболизма липидов (действует через несколько часов или даже дней после поступления сигнала) связан с увеличением или снижением содержания в клетках молекул ферментов за счет изменения скорости их синтеза или распада. Установлено, что значительное влияние на этот процесс оказывают гормоны и, прежде всего, стероидные, а также инсулин и некоторые препараты, используемые в медицине. Инсулин стимулирует анаболизм липидов; глюкагон, адреналин, липотропин, глюкокортикоиды, тиреоидные гормоны активируют катаболизм депонируемых форм липидов. С нарушением обмена липидов и его регуляцией связано развитие большого числа заболеваний. Нарушения обмена липидов возможны уже на этапе их переваривания и всасывания. Это может быть обусловлено дефицитом желчных кислот и, как следствие, нарушением эмульгирования и всасывания липидов. Кроме того, дефицит и недостаточная активность ферментов приводит к нарушению переваривания липидов и вызывает стеаторею. Следствием нарушения переваривания и всасывания липидов являются дефицит незаменимых ВЖК и витаминов А, Д, Е, К, Q. В лабораторной диагностике заболеваний, связанных с нарушением обмена липидов и липопротеинов, прежде всего ожирения, атеросклероза и ишемической болезни сердца, важная роль принадлежит анализу в сыворотке крови содержания общих липидов, триглицеридов, холестерина, фосфолипидов и, что наиболее важно, изменению отдельных классов липопротеинов. У пациентов можно обнаружить повышение в сыворотке крови содержания общих липидов (гиперлипидемия), триглицеридов (гипертриглицеридемия), холестерина и его эфиров (гиперхолестеринемия), липопротеинов (гиперлипопротеинемия), фиксируются также при этом различные изменения в соотношении содержания отдельных классов липопротеинов (дислипопротеинемия). Реже у пациентов приходится наблюдать понижение уровня липидов в сыворотке крови (гиполипидемия) и, прежде всего, липопротеинов высокой плотности (ЛПВП) и фосфолипидов, Изменение соотношения различных классов липопротеинов в сыворотке крови называют дислипопротеинемиями. Согласно Фредриксону различают 5 типов дислипопротеинемий, которые характеризуются преобладанием в сыворотке крови какого-либо одного или нескольких классов липопротеинов. Установлено, что ЛПОНП и ЛПНП — атерогенные липопротеины, а ЛПВП — антиатерогенные липопротеины. Фосфолипиды и ЛПВП — это антиатерогенные липиды и липопротеины. При снижении их содержания в крови у пациента повышается риск развития атеросклероза и ИБС. При атеросклерозе происходит образование на стенках артерий так называемых атеросклеротических бляшек, представляющих собой в основном отложения холестерина. Атеросклеротические бляшки разрушают клетки эндотелия сосудов, и в таких местах часто образуются тромбы. Одна из основных причин развития атеросклероза – нарушение баланса между поступлением холестерина с пищей, его синтезом и выведением из организма. Возникновение данного заболевания также связано с повышением в плазме крови содержания атерогенных липопротеинов (ЛПНП и ЛПОНП), богатых холестерином. Размеры ЛПНП и ЛПОНП соизмеримы с межклеточными промежутками, и при повышении их содержания в сыворотке крови, они накапливаются в интиме сосудов. Это ведет, вначале, к липоидозу, а затем к атеросклерозу и ИБС. ЛПВП, наоборот, богаты антиатерогенными фосфолипидами. По размеру ЛПВП (≈ 50% белка) значительно меньше, чем ЛПНП и ЛПОНП. Они относительно легко проникают в межклеточные пространства, извлекают из клеток (в том числе, из стенки сосуда) холестерин и поэтому являются антиатерогенными. В этом механизме необходимыми участниками являются фосфолипиды и фермент лецитинхолестеринацилтрансфераза (ЛХАТ). Следовательно, генетические дефекты ЛХАТ, аполипопротеинов ЛПВП, рецепторов к ЛПНП – причины атеросклероза различной степени тяжести, вплоть до летального исхода в раннем детском возрасте. К контролируемым факторам риска относятся: снижение количества фосфолипидов, увеличение количества холестерина, повреждение стенки различными факторами. Высокий уровень липидов в сыворотке крови может быть у практически здоровых лиц и наблюдается после приема с пищей избытка высококалорийных продуктов или, например, после мобилизации эндогенных ресурсов организма при стрессе. Это физиологически обусловленные гиперлипидемии. В зависимости от механизма нарушения обмена липидов следует различать гиперлипидемии или гиперлипопротеинемии первичные и вторичные. |