Главная страница

Производство ВМС на предпр. НХ. Производство ВМС на предпр. Лекции по курсу производство вмс на предприятиях нефтехимии


Скачать 2.6 Mb.
НазваниеЛекции по курсу производство вмс на предприятиях нефтехимии
АнкорПроизводство ВМС на предпр. НХ.docx
Дата03.05.2017
Размер2.6 Mb.
Формат файлаdocx
Имя файлаПроизводство ВМС на предпр. НХ.docx
ТипЛекции
#6751
страница16 из 48
1   ...   12   13   14   15   16   17   18   19   ...   48

Природа активных центров в процессах старения и их физико-химические особенности



Процессы старения полимеров в принципе могут протекать по радикальному, ионному и молекулярному механизмам. Разрушение многих материалов при их эксплуатации в естественных атмосферных условиях и космосе происходит по радикальному механизму. Ионный механизм обычно наблюдается при деструкции в агрессивных кислотно-основных средах и для полимеров, имеющих высокополярные группировки (например, поливинилпиридинийхлорид). Молекулярный механизм еще менее распространен.

Полимер, как и всякое твердое тело, имеет несовершенную, дефектную микроанизотропную физическую структуру.

Наличие микронеоднородности приводит, в частности, к неравномерному распределению добавок и реагентов в полимерной системе. Так, низкомолекулярные вещества (кислород, продукты окисления, ингибиторы, пластификаторы, красители и др.) сосредоточиваются в разрыхленных (аморфных) областях полимера. Там же локализуются наиболее реакционноспособные элементы макромолекул (окисленные группы, разветвления, ненасыщенные связи и т. д.). Локальные концентрации реагентов могут существенно отличаться от средних и, следовательно, локальные скорости химических реакций должны отличаться от средних.

Следующие примеры иллюстрируют заметное влияние физической структуры и морфологии полимера на реакционную способность реагирующих частиц и химическую кинетику. Так, растворимость водорода прямо пропорциональна доле аморфной фазы в полиэтилене; это означает, что даже водород — молекула с минимальными размерами — растворяется предпочтительно б аморфной части, то есть доступность кристаллических областей весьма ограничена. Скорость радикальных реакций в ориентированном полистироле гораздо ниже, чем в неориентированном (соответственно стабильность ориентированного полистирола выше, чем неориентированного).

Радикальные реакции в полиэтилене низкой плотности могут идти со скоростями на два порядка выше, чем в полиэтилене высокой плотности.

Особенностью химических реакций в полимерах является то, что распределение областей и структурных элементов по частотам и амплитудам молекулярных движений приводит к распределению по реакционной способности, константам скоростей и энергиям активации, а следовательно, к ступенчатой полихроматической кинетике.

Термическое старение в отсутствие кислорода



Под действием тепла в вакууме или инертной среде в макромолекулах полимеров происходит разрыв основной цепи или отщепление боковых групп. Необратимые химические изменения, связанные с деструкцией основных цепей, проявляются в снижении прочности и эластичности полимеров. Механизм термодеструкции выяснен достаточно полно только для алифатических карбоцепных полимеров. Установлено, что термодеструкция происходит как цепной радикальный неразветвленный процесс, в котором стадией инициирования является распад макромолекул с образованием радикалов. Продолжение цепи заключается в распаде возникших макрорадикалов, а также в их изомеризации и реакции передачи ими цепи. Обрыв кинетических цепей является квадратичным и происходит путем рекомбинации или диспропорцио- нирования макрорадикалов.

Термодеструкция определяется прочностью химических связей в макромолекулах и облегчается действием на полимеры света, кислорода, присутствием в них различных примесей. Разрыв химической связи наступает, когда на ней локализуется тепловая энергия в количестве, превосходящем ее прочность, и в условиях, способствующих протеканию свободнорадикальных процессов.

О способности полимеров к сопротивлению термостарению можно судить по величинам энергии диссоциации связей в макромолекуле (табл. 4.2).

Из анализа табл. 4.2 следует:

  • разрыв цепей у карбоцепных полимеров проходит по С-С-связям;

  • более легко распадаются полимеры, имеющие боковые разветвления в макромолекулах. С-С-связи с четвертичными атомом углерода распадаются легче, чем с третичным. Связь С-С, находящаяся в β-положении к двойной связи С=С, всегда ослаблена и легко диссоциирует.

При термической деструкции одни полимеры разрушаются с образованием коротких цепей различного строения (полиэтилен, полипропилен), другие — с образованием мономера (полиметилметакрилат, полиизобутилен, поли-а-метилстирол). Деструкция первых протекает по закону случая (статистически):
\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image11.png
При этом из одной макромолекулы образуются по крайней мере две, причем длина возникших цепей может быть самой неопределенной.

Деструкция вторых протекает по закону деполимеризации, то есть с образованием пизкомолекулярного вещества — исходного мономера (реже ди- и тримера):

\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image12.png

Реакции деполимеризации подвержены полимеры, в цепях которых содержится третичный или четвертичный атом углерода.

Деполимеризация может намеренно применяться для утилизации отходов термопластов в целях получения мономеров и возвращения их в цикл синтеза полимеров. Продукты термической деструкции некоторых промышленных полимеров приведены ниже:

\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image13.png
В чистом виде термическая деструкция реализуется достаточно редко, так как на деструктивные процессы оказывают сильное влияние даже следы кислорода. По этой причине высокотемпературное старение полимеров протекает как совокупность процессов термической и термоокислительной деструкции. Термодеструкция — это самый сложный для стабилизации вид разложения полимеров.
1   ...   12   13   14   15   16   17   18   19   ...   48


написать администратору сайта