Главная страница

Производство ВМС на предпр. НХ. Производство ВМС на предпр. Лекции по курсу производство вмс на предприятиях нефтехимии


Скачать 2.6 Mb.
НазваниеЛекции по курсу производство вмс на предприятиях нефтехимии
АнкорПроизводство ВМС на предпр. НХ.docx
Дата03.05.2017
Размер2.6 Mb.
Формат файлаdocx
Имя файлаПроизводство ВМС на предпр. НХ.docx
ТипЛекции
#6751
страница19 из 48
1   ...   15   16   17   18   19   20   21   22   ...   48

Защита полимеров от старения


Поскольку старение многих полимеров протекает в основном по механизму цепных радикальных реакций, то при защите их от старения нужно в первую очередь исходить из таких мер, которые были бы направлены на подавление этих реакций. Промышленным путем защиты полимеров от старения, стабилизации свойств изделий из них во времени является введение в полимеры на стадии производства малых (до 5%) добавок низкомолекулярных веществ — стабилизаторов. Общее назначение стабилизатора состоит в рассеянии на своих молекулах определенного вида энергии, разрушающей полимер.

Стабилизаторы, подавляющие развитие реакций деструкции, называют ингибиторами. Следовательно, стабилизатор-ингибитор — это вещество, распадающееся с образованием радикалов. Эффективность стабилизатора тем выше, чем менее активен в развитии цепных реакций и более устойчив во времени его радикал.

Защита полимеров от термического и термоокислительного старения


Стабилизаторы, замедляющие старение полимеров под влиянием тепла, называют термостабилизаторами.

В зависимости от механизма действия термостабилизаторы делятся на акцепторы низкомолекулярных продуктов деструкции, акцепторы радикалов и антиокси- данты.

Акцепторы низкомолекулярных продуктов деструкции (НС1, Н2О, СН2О и др.) применяют при термическом и термоокислтельном старении таких полимеров, при нагревании которых задолго до разрыва основной цепи происходит отрыв боковых заместителей, содержащих гетероатомы, которые катализируют дальнейший процесс деструкции. Связывание продуктов деструкции увеличивает стабильность полимера.

Акцепторы радикалов применяют при термической деструкции. Применение таких стабилизаторов особенно эффективно для стабилизации полимеров, когда основным процессом является деполимеризация. В этом случае удаление образовавшихся радикалов прекращает или замедляет цепной процесс термического распада. Ингибитор должен обладать высокой молекулярной подвижностью, чтобы быстро диффундировать к месту образования макрорадикала.

Для торможения термоокислительного старения к полимерам добавляют термо- стабилизаторы-аптиоксидаиты. Это наиболее распространенный класс стабилизаторов, так как основной причиной ухудшения эксплуатационных свойств термопластов в изделиях является протекание термоокислительных процессов.

В качестве антиоксидантов применяют большое число соединений различных классов. Условно их разделяют на два типа по основному механизму ингибирования окисления.

К антиоксидантам первого типа относятся:

  • замещенные фенолы с заместителями, стерически защищающими ОН-группу (экранированные фенолы), и многоядерные фенолы, в особенности бисфенолы, а также продукты конденсации фенолов и комплексы с металлами;

  • ароматические амины, аминофенолы и продукты конденсации ароматических аминов.

Процесс ингибирования окисления заключается в отрыве полимерным радикалом атома водорода от молекулы антиоксиданта АН:

\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image25.png

Активность радикала А˙ должна быть ниже активности полимерного радикала RО2˙ или RO˙, с которым он взаимодействует. Однако нельзя считать, что отрыв водорода от молекулы антиоксиданта — это основной механизм ингибирования. Антиоксиданты могут взаимодействовать с радикалами по реакциям:

\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image26.png

В некоторых случаях антиоксидант способен связывать свободный радикал в комплекс или образовывать с пероксидным радикалом при помощи ковалентной связи соединения по реакции

\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image27.png

Антиоксиданты первого типа относятся к сильным, имеющим так называемую критическую концентрацию в полимере.

К антиоксидантам второго типа относятся:

  • органические серосодержащие соединения (тиоэфиры, тиобисфенолы, дисульфиды, тиоспирты, дитиокарбаматы и др.), такие соединения, как дилауриловый эфир β,β-тиодипропионовой кислоты, дистеарилдисульфид, меркаптобензимидазол и т. д.;

  • органические фосфорсодержащие соединения, в особенности эфиры фосфористой и производные тиофосфорных кислот.

Эти соединения разрушают гидропероксиды, не образуя радикалов. Сульфиды и дисульфиды реагируют с гидропероксидами, образуя последовательно сульфоксиды и сульфоны, а фосфиты окисляются до фосфатов; гидропероксид при этом восстанавливается до спирта. Реакции протекают с низкими энергиями активации (21- 58 кДж/моль). Недостаток этих антиоксидантов — их возможное самоокисление.

Разрушать гидропероксиды без образования активных радикалов могут и некоторые бисфенолы.

Антиоксиданты второго типа называют превентивными, слабыми, не имеющими критической концентрации.

Достоинством антиоксидантов первого типа является их высокая эффективность. Они, за редким исключением, резко уменьшают длину кинетических цепей термоокисления полимеров, не участвуя в дальнейшей передаче цепей. Критические концентрации этих антиоксидантов малы, даже незначительного их количества достаточно, чтобы перевести цепной автокаталитической процесс в медленный стационарный.

К серьезным недостаткам этих антиоксидантов можно отнести следующие:

1. Антиоксиданты способны окисляться по реакции с кислородом, в результате чего происходит их расход и образование (что крайне нежелательно) активных радикалов

2. При обрыве кинетической цепи антиоксидантом образуются гидропероксиды АООН, распад которых приводит к вырожденному разветвлению процесса, что сильно снижает защитное действие ингибитора

3. Разветвляющий продукт образуется при взаимодействии радикала антиоксидаита с пероксидпым по реакции

\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image30.png

Пероксидпые соединения ROOA и АООН неустойчивы и вызывают разветвление кинетических цепей, что ухудшает защитные свойства ингибитора. Вероятность образования пероксидов аитиоксиданта зависит прежде всего от структуры радикала А˙ и режима окисления. Лучшие защитные свойства имеет тот антиоксидант, для которого реакция А˙ + А˙ → А2преобладает над реакциями образования пероксидов RООА и АООН.

4. Ограниченная растворимость в полимере, неоднородность распределения, летучесть, вымываемость и «выпотевание» из полимерного материала, а также окрашивание его продуктами превращения аитиоксиданта — хиноидными соединениями.

Указанные факторы в некоторых условиях являются более определяющими, чем структура стабилизирующей добавки. Их можно избежать, применяя высокомолекулярные антиоксиданты. При их применении практически сохраняется молекулярная масса полимера благодаря рекомбинации его макрорадикалов с макрорадикалами полимерных стабилизаторов:

\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image31.png

Эффективную защиту от термоокислительного старения обеспечивает применение пары антиоксидантов, действующих по разным механизмам. Взаимоусиленный стабилизирующий эффект смесью двух антиоксидантов называют синергизмом. Синергическим действием при стабилизации полиолефинов обладает, например, смесь дилаурилтиопропионат (антиоксидант превентивного действия) — ионол (антиоксидант-ингибитор 2,6-ди-трет-бутил-4-метил-фенол):

\\stas\обменник\лакеев\нефтяной институт\лекции\лекции технология полимерных мат\media\image32.png

Синергическую пару могут составлять антиоксиданты одинакового механизма действия, но отличающиеся по своей активности (эффективности): чаще всего это смеси ароматических аминов АmН и фенолов PhOH. Синергический эффект наиболее значителен при высоких температурах.

Многие антиоксиданты проявляют активность при температурах, не превышающих 280°С. При более высоких температурах полимеры защищают от термоокисления металлами, оксидами и солями металлов переменной валентности. Тонкодисперсные порошки этих добавок поглощают кислород, и термоокислительная деструкция заменяется термической, которая всегда протекает медленнее.
1   ...   15   16   17   18   19   20   21   22   ...   48


написать администратору сайта