Главная страница
Навигация по странице:

  • ЛЕКЦИЯ № 10. Иммунная система организма человека 1. Центральные и периферические органы иммунной системы

  • 2. Клетки иммунной системы

  • 3. Формы иммунного ответа

  • ЛЕКЦИЯ № 11. Антигены 1. Свойства и типы антигенов

  • 2. Антигены микроорганизмов

  • ЛЕКЦИЯ № 12. Антитела 1. Структура иммуноглобулинов

  • Лекция Введение в микробиологию


    Скачать 0.63 Mb.
    НазваниеЛекция Введение в микробиологию
    Дата16.12.2022
    Размер0.63 Mb.
    Формат файлаdoc
    Имя файлаMicra (1).doc
    ТипЛекция
    #848168
    страница5 из 13
    1   2   3   4   5   6   7   8   9   ...   13
    2. Неспецифические факторы защиты

    Противоинфекционную защиту осуществляют:

    1) кожа и слизистые оболочки;

    2) лимфатические узлы;

    3) лизоцим и другие ферменты полости рта и ЖКТ;

    4) нормальная микрофлора;

    5) воспаление;

    6) фагоцитирующие клетки;

    7) естественные киллеры;

    8) система комплемента;

    9) интерфероны.

    Неповрежденная кожа и слизистые оболочки являются барьером, препятствующим проникновению микроорганизмов внутрь организма. В результате слущивания эпидермиса удаляются многие транзиторные микроорганизмы. Бактерицидными свойствами обладает секрет потовых и сальных желез. При наличии травм, ожогов кожа формирует входные ворота для инфекции.

    Секреты, выделяемые слизистыми оболочками, слюнными и пищеварительными железами, слезы смывают микроорганизмы с поверхности слизистых, оказывают бактерицидное действие.

    Лизоцим – белок, содержащийся в тканевых жидкостях, плазме, сыворотке крови, лейкоцитах, материнском молоке и др. Он вызывает лизис бактерий, неактивен в отношении вирусов.

    Представители нормальной микрофлоры могут выступать в качестве антагонистов патогенных микроорганизмов, препятствуя их внедрению и размножению.

    Воспаление – защитная функция организма. Оно ограничивает очаг инфекции на месте входных ворот. Ведущим звеном в развитии воспаления является фагоцитоз.

    Завершенный фагоцитоз – защитная функция организма.

    Различают следующие стадии фагоцитоза:

    1) аттракцию;

    2) адгезию;

    3) эндоцитоз;

    4) киллинг;

    5) элиминацию.

    Если отсутствуют последние две стадии, то это незавершенный фагоцитоз. При этом процесс теряет защитную функцию, бактерии внутри макрофагов разносятся по организму.

    Естественные киллеры – популяция клеток, обладающая естественной цитотоксичностью по отношению к клеткам-мишеням. Морфологически представляют собой большие гранулосодержащие лимфоциты. Являются клетками с эффекторной противоопухолевой, противовирусной и противопаразитарной активностью.

    Комплемент – это система неспецифических белков сыворотки крови, состоящая из девяти фракций. Активация одной фракции активирует последующую фракцию. Обладает бактерицидным действием, так как имеет сродство с поверхностными структурами бактериальной клетки и совместно с лизоцимом может вызывать цитолиз.

    Интерфероны – белки, обладающие противовирусным, противоопухолевым, иммуномодулирующим действием. Интерферон действует посредством регуляции синтеза нуклеиновых кислот и белков, активируя синтез ферментов и ингибиторов, блокирующих трансляцию вирусных и РНК. Как правило, он не спасает клетку, уже пораженную вирусом, но предохраняет соседние клетки от вирусной инфекции.

    ЛЕКЦИЯ № 10. Иммунная система организма человека

    1. Центральные и периферические органы иммунной системы

    Иммунная системы человека обеспечивает специфическую защиту организма от генетически чужеродных молекул и клеток, в том числе инфекционных агентов – бактерий, вирусов, грибов, простейших.

    Лимфоидные клетки созревают и функционируют в определенных органах.

    Органы иммунной системы делят на:

    1) первичные (центральные); вилочковая железа, костный мозг являются местами дифференцировки популяций лимфоцитов;

    2) вторичные (периферические); селезенка, лимфатические узлы, миндалины, ассоциированная с кишечником и бронхами лимфоидная ткань заселяются В– и Т-лимфоцитами из центральных органов иммунной системы; после контакта с антигеном в этих органах лимфоциты включаются в рециркуляцию.

    Вилочковая железа (тимус) играет ведущую роль в регуляции популяции Т-лимфоцитов. Тимус поставляет лимфоциты, в которых для роста и развития лимфоидных органов и клеточных популяций в различных тканях нуждается эмбрион.

    Дифференцируясь, лимфоциты благодаря освобождению гуморальных веществ получают антигенные маркеры.

    Корковый слой густо заполнен лимфоцитами, на которые воздействуют тимические факторы. В мозговом слое находятся зрелые Т-лимфоциты, покидающие вилочковую железу и включающиеся в циркуляцию в качестве Т-хелперов, Т-киллеров, Т-супрессоров.

    Костный мозг поставляет клетки-предшественники для различных популяций лимфоцитов и макрофагов, в нем протекают специфические иммунные реакции. Он служит основным источником сывороточных иммуноглобулинов.

    Селезенка заселяется лимфоцитами в позднем эмбриональном периоде после рождения. В белой пульпе имеются тимусзависимые и тимуснезависимые зоны, которые заселяются Т– и В-лимфоцитами. Попадающие в организм антигены индуцируют образование лимфобластов в тимусзависимой зоне селезенки, а в тимуснезависимой зоне отмечаются пролиферация лимфоцитов и образование плазматических клеток.

    Лимфоциты поступают в лимфатические узлы по афферентным лимфатическим сосудам. Перемещение лимфоцитов между тканями, кровеносным руслом и лимфоузлами позволяет антиген-чувствительным клеткам обнаруживать антиген и скапливаться в тех местах, где происходит иммунная реакция, а распространение по организму клеток памяти и их потомков позволяет лимфоидной системе организовать генерализованный иммунный ответ.

    Лимфатические фолликулы пищеварительного тракта и дыхательной системы служат главными входными воротами для антигенов. В этих органах наблюдается тесная связь между лимфоидными клетками и эндотелием, как и в центральных органах иммунной системы.

    2. Клетки иммунной системы

    Иммунокомпетентными клетками организма человека являются Т– и В-лимфоциты.

    T-лимфоциты возникают в эмбриональном тимусе. В постэмбриональном периоде после созревания T-лимфоциты расселяются в T-зонах периферической лимфоидной ткани. После стимуляции (активации) определенным антигеном T-лимфоциты преобразовываются в большие трансформированные T-лимфоциты, из которых затем возникает исполнительное звено T-клеток.

    Т-клетки участвуют в:

    1) клеточном иммунитете;

    2) регулировании активности В-клеток;

    3) гиперчувствительности замедленного (IV) типа.

    Различают следующие субпопуляции Т-лимфоцитов:

    1) Т-хелперы. Запрограммированы индуцировать размножение и дифференцировку клеток других типов. Они индуцируют секрецию антител В-лимфоцитами и стимулируют моноциты, тучные клетки и предшественники Т-киллеров к участию в клеточных иммунных реакциях. Эта субпопуляция активируется антигенами, ассоциируемыми с продуктами генов МНС класса II – молекулами класса II, представленными преимущественно на поверхности В-клеток и макрофагов;

    2) супрессорные Т-клетки. Генетически запрограммированы для супрессорной активности, отвечают преимущественно на продукты генов МНС класса I. Они связывают антиген и секретируют факторы, инактивирующие Т-хелперы;

    3) Т-киллеры. Узнают антиген в комплексе с собственными МНС-молекулами класса I. Они секретируют цитотоксические лимфокины.

    Основная функция В-лимфоцитов заключается в том, что в ответ на антиген они способны размножаться и дифференцироваться в плазматические клетки, продуцирующие антитела.

    В-лимфоциты разделяют на две субпопуляции: В1 и В2.

    В1-лимфоциты проходят первичную дифференцировку в пейеровых бляшках, затем обнаруживаются на поверхности серозных полостей. В ходе гуморального иммунного ответа способны превращаться в плазмоциты, которые синтезируют только IgМ. Для их превращения не всегда нужны Т-хелперы.

    В2-лимфоциты проходят дифференцировку в костном мозге, затем в красной пульпе селезенки и лимфоузлах. Их превращение в плазмоциты идет с участием Т-хелперов. Такие плазмоциты способны синтезировать все классы Ig человека.

    В-клетки памяти – это долгоживущие В-лимфоциты, произошедшие из зрелых В-клеток в результате стимуляции антигеном при участии Т-лимфоцитов. При повторной стимуляции антигеном эти клетки активируются гораздо легче, чем исходные В-клетки. Они обеспечивают (при участии Т-клеток) быстрый синтез большого количества антител при повторном проникновении антигена в организм.

    Макрофаги отличаются от лимфоцитов, но также играют важную роль в иммунном ответе. Они могут быть:

    1) антигенобрабатывающими клетками при возникновении ответа;

    2) фагоцитами в виде исполнительного звена.

    3. Формы иммунного ответа

    Иммунный ответ – это цепь последовательных сложных кооперативных процессов, идущих в иммунной системе в ответ на действие антигена в организме.

    Различают:

    1) первичный иммунный ответ (возникает при первой встрече с антигеном);

    2) вторичный иммунный ответ (возникает при повторной встрече с антигеном).

    Любой иммунный ответ состоит из двух фаз:

    1) индуктивной; представление и распознавание антигена. Возникает сложная кооперация клеток с последующей пролиферацией и дифференцировкой;

    2) продуктивной; обнаруживаются продукты иммунного ответа.

    При первичном иммунном ответе индуктивная фаза может длиться неделю, при вторичном – до 3 дней за счет клеток памяти.

    В иммунном ответе антигены, попавшие в организм, взаимодействуют с антигенпредставляющими клетками (макрофагами), которые экспрессируют антигенные детерминанты на поверхности клетки и доставляют информацию об антигене в периферические органы иммунной системы, где происходит стимуляция Т-хелперов.

    Далее иммунный ответ возможен в виде по одного из трех вариантов:

    1) клеточный иммунный ответ;

    2) гуморальный иммунный ответ;

    3) иммунологическая толерантность.

    Клеточный иммунный ответ – это функция T-лимфоцитов. Происходит образование эффекторных клеток – T-киллеров, способных уничтожать клетки, имеющие антигенную структуру путем прямой цитотоксичности и путем синтеза лимфокинов, которые участвуют в процессах взаимодействия клеток (макрофагов, T-клеток, B-клеток) при иммунном ответе. В регуляции иммунного ответа участвуют два подтипа T-клеток: T-хелперы усиливают иммунный ответ, T-супрессоры оказывают противоположное влияние.

    Гуморальный иммунитет – это функция B-клеток. Т-хелперы, получившие антигенную информацию, передают ее В-лимфоцитам. В-лимфоциты формируют клон антителопродуцирующих клеток. При этом происходит преобразование B-клеток в плазматические клетки, секретирующие иммуноглобулины (антитела), которые имеют специфическую активность против внедрившегося антигена.

    Образующиеся антитела вступают во взаимодействие с антигеном с образованием комплекса АГ – АТ, который запускает в действие неспецифические механизмы защитной реакции. Эти комплексы активируют систему комплемента. Взаимодействие комплекса АГ – АТ с тучными клетками приводит к дегрануляции и выделению медиаторов воспаления – гистамина и серотонина.

    При низкой дозе антигена развивается иммунологическая толерантность. При этом антиген распознается, но в результате этого не происходит ни продукции клеток, ни развития гуморального иммунного ответа.

    Иммунный ответ характеризуется:

    1) специфичностью (реактивность направлена только на определенный агент, который называется антигеном);

    2) потенцированием (способностью производить усиленный ответ при постоянном поступлении в организм одного и того же антигена);

    3) иммунологической памятью (способностью распознавать и производить усиленный ответ против того же самого антигена при повторном его попадании в организм, даже если первое и последующие попадания происходят через большие промежутки времени).

    ЛЕКЦИЯ № 11. Антигены

    1. Свойства и типы антигенов

    Антигены – это высокомолекулярные соединения. При попадании в организм вызывают иммунную реакцию и взаимодействуют с продуктами этой реакции: антителами и активированными лимфоцитами.

    Классификация антигенов.

    1. По происхождению:

    1) естественные (белки, углеводы, нуклеиновые кислоты, бактериальные экзо– и эндотоксины, антигены клеток тканей и крови);

    2) искусственные (динитрофенилированные белки и углеводы);

    3) синтетические (синтезированные полиаминокислоты, полипептиды).

    2. По химической природе:

    1) белки (гормоны, ферменты и др.);

    2) углеводы (декстран);

    3) нуклеиновые кислоты (ДНК, РНК);

    4) конъюгированные антигены (динитрофенилированные белки);

    5) полипептиды (полимеры a-аминокислот, кополимеры глутамина и аланина);

    6) липиды (холестерин, лецитин, которые могут выступать в роли гаптена, но, соединившись с белками сыворотки крови, они приобретают антигенные свойства).

    3. По генетическому отношению:

    1) аутоантигены (происходят из тканей собственного организма);

    2) изоантигены (происходят от генетически идентичного донора);

    3) аллоантигены (происходят от неродственного донора того же вида);

    4) ксеноантигены (происходят от донора другого вида).

    4. По характеру иммунного ответа:

    1) тимусзависимые антигены (иммунный ответ зависит от активного участия Т-лимфоцитов);

    2) тимуснезависимые антигены (запускают иммунный ответ и синтез антител В-клетками без Т-лимфоцитов).

    Выделяют также:

    1) внешние антигены; попадают в организм извне. Это микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентеральным путем;

    2) внутренние антигены; возникают из поврежденных молекул организма, которые распознаются как чужие;

    3) скрытые антигены – определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды); анатомически отделены от иммунной системы гистогематическими барьерами в процессе эмбриогенеза; толерантность к этим молекулам не возникает; их попадание в кровоток может приводить к иммунному ответу.

    Иммунологическая реактивность против измененных или скрытых собственных антигенов возникает при некоторых аутоиммунных заболеваниях.

    Свойства антигенов:

    1) антигенность – способность вызывать образование антител;

    2) иммуногенность – способность создавать иммунитет;

    3) специфичность – антигенные особенности, благодаря наличию которых антигены отличаются друг от друга.

    Гаптены – низкомолекулярные вещества, которые в обычных условиях не вызывают иммунной реакции, но при связывании с высокомолекулярными молекулами приобретают иммуногенность. К гаптенам относятся лекарственные препараты и большинство химических веществ. Они способны вызывать иммунный ответ после связывания с белками организма.

    Антигены или гаптены, которые при повторном попадании в организм вызывают аллергическую реакцию, называются аллергенами.

    2. Антигены микроорганизмов

    Инфекционные антигены – это антигены бактерий, вирусов, грибов, простейших.

    Существуют следующие разновидности бактериальных антигенов:

    1) группоспецифические (встречаются у разных видов одного рода или семейства);

    2) видоспецифические (встречаются у различных представителей одного вида);

    3) типоспецифические (определяют серологические варианты – серовары, антигеновары – внутри одного вида).

    В зависимости от локализации в бактериальной клетке различают:

    1) О – АГ – полисахарид; входит в состав клеточной стенки бактерий. Определяет антигенную специфичность липополисахарида клеточной стенки; по нему различают сероварианты бактерий одного вида. О – АГ слабо иммуногенен. Он термостабилен (выдерживает кипячение в течение 1–2 ч), химически устойчив (выдерживает обработку формалином и этанолом);

    2) липид А – гетеродимер; содержит глюкозамин и жирные кислоты. Он обладает сильной адьювантной, неспецифической иммуностимулирующей активностью и токсичностью;

    3) Н – АГ; входит в состав бактериальных жгутиков, основа его – белок флагеллин. Термолабилен;

    4) К – АГ – гетерогенная группа поверхностных, капсульных антигенов бактерий. Они находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки;

    5) токсины, нуклеопротеины, рибосомы и ферменты бактерий.

    Антигены вирусов:

    1) суперкапсидные антигены – поверхностные оболочечные;

    2) белковые и гликопротеидные антигены;

    3) капсидные – оболочечные;

    4) нуклеопротеидные (сердцевинные) антигены.

    Все вирусные антигены Т-зависимые.

    Протективные антигены – это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторного инфицирования данным возбудителем.

    Пути проникновения инфекционных антигенов в организм:

    1) через поврежденную и иногда неповрежденную кожу;

    2) через слизистые оболочки носа, рта, ЖКТ, мочеполовых путей.

    Гетероантигены – общие для представителей разных видов антигенные комплексы или общие антигенные детерминанты на различающихся по другим свойствам комплексах. За счет гетероантигенов могут возникать перекрестные иммунологические реакции.

    У микробов различных видов и у человека встречаются общие, сходные по строению антигены. Эти явления называются антигенной мимикрией.

    Суперантигены – это особая группа антигенов, которые в очень малых дозах вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины, некоторые вирусы (ротавирусы).

    ЛЕКЦИЯ № 12. Антитела

    1. Структура иммуноглобулинов

    Антитела (иммуноглобулины) – это белки, которые синтезируются под влиянием антигена и специфически с ним реагируют.

    Они состоят из полипептидных цепей. В молекуле иммуноглобулина различают четыре структуры:

    1) первичную – это последовательность определенных аминокислот. Она строится из нуклеотидных триплетов, генетически детерминируется и определяет основные последующие структурные особенности;

    2) вторичную (определяется конформацией полипептидных цепей);

    3) третичную (определяет характер расположения отдельных участков цепи, создающих пространственную картину);

    4) четвертичную. Из четырех полипептидных цепей возникает биологически активный комплекс. Цепи попарно имеют одинаковую структуру.

    Большинство молекул иммуноглобулинов составлено из двух тяжелых (H) цепей и двух легких (L) цепей, соединенных дисульфидными связями. Легкие цепи состоят или из двух k-цепей, или из двух l-цепей. Тяжелые цепи могут быть одного из пяти классов (IgA, IgG, IgM, IgD и IgE).

    Каждая цепь имеет два участка:

    1) постоянный. Остается постоянным в последовательности аминокислот и антигенности в пределах данного класса иммуноглобулинов;

    2) вариабельный. Характеризуется большой непостоянностью последовательности аминокислот; в этой части цепи происходит реакция соединения с антигеном.

    Каждая молекула IgG состоит из двух соединенных цепей, концы которых формируют два антигенсвязывающих участка. На вариабельном участке каждой цепи имеются гипервариабельные участки: три в легких цепях и четыре в тяжелых. Разновидности последовательности аминокислот в этих гипервариабельных участках определяют специфичность антитела. При определенных условиях эти гипервариабельные области могут также выступать в роли антигенов (идиотипов).

    В молекуле иммуноглобулина меньше двух антигенсвязывающих центров быть не может, но один может быть завернут внутрь молекулы – это неполное антитело. Оно блокирует антиген, и тот не может связаться с полными антителами.

    При энзиматическом расщеплении иммуноглобулинов образуются следующие фрагменты:

    1) Fc-фрагмент содержит участки обеих постоянных частей; не обладает свойством антитела, но имеет сродство с комплементом;

    2) Fab-фрагмент содержит легкую и часть тяжелой цепи с одним антигенсвязывающим участком; обладает свойством антитела;

    3) F(ab)Т2-фрагмент состоит из двух связанных между собой Fab-фрагментов.

    Другие классы иммуноглобулинов имеют такую же основную структуру. Исключение – IgM: является пентамером (состоит из пяти основных единиц, связанных в области Fc-концов), а IgA – димер.

    1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта