Главная страница
Навигация по странице:

  • 2. Питание бактерий

  • 3. Метаболизм бактериальной клетки

  • 4. Виды пластического обмена

  • ЛЕКЦИЯ № 4. Генетика микроорганизмов. Бактериофаги 1. Организация наследственного материала бактерий

  • 2. Изменчивость у бактерий

  • Лекция Введение в микробиологию


    Скачать 0.63 Mb.
    НазваниеЛекция Введение в микробиологию
    Дата16.12.2022
    Размер0.63 Mb.
    Формат файлаdoc
    Имя файлаMicra (1).doc
    ТипЛекция
    #848168
    страница2 из 13
    1   2   3   4   5   6   7   8   9   ...   13
    ЛЕКЦИЯ № 3. Физиология бактерий

    1. Рост и размножение бактерий

    Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

    Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

    Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

    Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала – сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.

    Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

    На плотных питательных средах бактерии образуют скопления клеток – колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

    Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

    Фазы размножение бактериальной клетки на жидкой питательной среде:

    1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;

    2) лаг-фаза (фаза покоя); продолжительность – 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;

    3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;

    4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;

    5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

    2. Питание бактерий

    Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.

    Среди необходимых питательных веществ выделяют органогены – это восемь химических элементов, концентрация которых в бактериальной клетке превосходит 10—4 моль. К ним относят углерод, кислород, водород, азот, фосфор, калий, магний, кальций.

    Кроме органогенов, необходимы микроэлементы. Они обеспечивают активность ферментов. Это цинк, марганец, молибден, кобальт, медь, никель, вольфрам, натрий, хлор.

    Для бактерий характерно многообразие источников получения питательных веществ.

    В зависимости от источника получения углерода бактерии делят на:

    1) аутотрофы (используют неорганические вещества – СО2);

    2) гетеротрофы;

    3) метатрофы (используют органические вещества неживой природы);

    4) паратрофы (используют органические вещества живой природы).

    Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.

    По источникам энергии микроорганизмы делят на:

    1) фототрофы (способны использовать солнечную энергию);

    2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

    3) хемолитотрофы (используют неорганические соединения);

    4) хемоорганотрофы (используют органические вещества).

    Факторами роста бактерий являются витамины, аминокислоты, пуриновые и пиримидиновые основания, присутствие которых ускоряет рост.

    Среди бактерий выделяют:

    1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);

    2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ – витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).

    Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

    Метаболиты и ионы поступают в микробную клетку различными путями.

    Пути поступления метаболитов и ионов в микробную клетку.

    1. Пассивный транспорт (без энергетических затрат):

    1) простая диффузия;

    2) облегченная диффузия (по градиенту концентрации, с помощью белков-переносчиков).

    2. Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).

    Встречаются модифицированные варианты активного транспорта – перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией.

    3. Метаболизм бактериальной клетки

    Особенности метаболизма у бактерий:

    1) многообразие используемых субстратов;

    2) интенсивность процессов метаболизма;

    3) направленность всех процессов метаболизма на обеспечение процессов размножения;

    4) преобладание процессов распада над процессами синтеза;

    5) наличие экзо– и эндоферментов метаболизма.

    В процессе метаболизма выделяют два вида обмена:

    1) пластический (конструктивный):

    а) анаболизм (с затратами энергии);

    б) катаболизм (с выделением энергии);

    2) энергетический обмен (протекает в дыхательных мезосомах):

    а) дыхание;

    б) брожение.

    В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных – брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.

    В микробной клетке ферменты являются биологическими катализаторами. По строению выделяют:

    1) простые ферменты (белки);

    2) сложные; состоят из белковой (активного центра) и небелковой частей; необходимы для активизации ферментов.

    Различают также:

    1) конституитивные ферменты (синтезируются постоянно независимо от наличия субстрата);

    2) индуцибельные ферменты (синтезируются только в присутствии субстрата).

    Набор ферментов в клетке строго индивидуален для вида. Способность микроорганизма утилизировать субстраты за счет своего набора ферментов определяет его биохимические свойства.

    По месту действия выделяют:

    1) экзоферменты (действуют вне клетки; принимают участие в процессе распада крупных молекул, которые не могут проникнуть внутрь бактериальной клетки; характерны для грамположительных бактерий);

    2) эндоферменты (действуют в самой клетке, обеспечивают синтез и распад различных веществ).

    В зависимости от катализируемых химических реакций все ферменты делят на шесть классов:

    1) оксидоредуктазы (катализируют окислительно-восстановительные реакции между двумя субстратами);

    2) трансферазы (осуществляют межмолекулярный перенос химических групп);

    3) гидролазы (осуществляют гидролитическое расщепление внутримолекулярных связей);

    4) лиазы (присоединяют химические группы по двум связям, а также осуществляют обратные реакции);

    5) изомеразы (осуществляют процессы изомеризации, обеспечивают внутреннюю конверсию с образованием различных изомеров);

    6) лигазы, или синтетазы (соединяют две молекулы, вследствие чего происходит расщепление пирофосфатных связей в молекуле АТФ).

    4. Виды пластического обмена

    Основными видами пластического обмена являются:

    1) белковый;

    2) углеводный;

    3) липидный;

    4) нуклеиновый.

    Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты.

    Распад белков в аэробных условиях называется тлением, в анаэробных – гниением.

    В результате распада аминокислот клетка получает ионы аммония, необходимые для формирования собственных аминокислот. Бактериальные клетки способны синтезировать все 20 аминокислот. Ведущими из них являются аланин, глютамин, аспарагин. Они включаются в процессы переаминирования и трансаминирования. В белковом обмене процессы синтеза преобладают над распадом, при этом происходит потребление энергии.

    В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Сложные углеводы внешней среды могут расщеплять только те бактерии, которые выделяют ферменты – полисахаридазы. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются до моносахаров, причем внутрь клетки может поступать только глюкоза. Часть ее идет на синтез собственных полисахаридов в клетке, другая часть подвергается дальнейшему расщеплению, который может идти по двум путям: по пути анаэробного распада углеводов – брожению (гликолизу) и в аэробных условиях – по пути горения.

    В зависимости от конечных продуктов выделяют следующие виды брожения:

    1) спиртовое (характерно для грибов);

    2) пропионионово-кислое (характерно для клостридий, пропиони-бактерий);

    3) молочнокислое (характерно для стрептококков);

    4) маслянокислое (характерно для сарцин);

    5) бутилденгликолевое (характерно для бацилл).

    Наряду с основным анаэробным распадом (гликолизом) могут быть вспомогательные пути расщепления углеводов (пентозофосфатный, кетодезоксифосфоглюконатный и др.). Они отличаются ключевыми продуктами и реакциями.

    Липидный обмен осуществляется с помощью ферментов – липопротеиназ, летициназ, липаз, фосфолипаз.

    Липазы катализируют распад нейтральных жирных кислот, т. е. ответственны за отщепление этих кислот от глицерина. При распаде жирных кислот клетка запасает энергию. Конечным продуктом распада является ацетил-КоА.

    Биосинтез липидов осуществляется за счет ацетилпереносящих белков. При этом ацетильный остаток переходит на глицерофосфат с образованием фосфатидных кислот, а они уже вступают в химические реакции с образованием сложных эфиров со спиртами. Эти превращения лежат в основе синтеза фосфолипидов.

    Бактерии способны синтезировать как насыщенные, так и ненасыщенные жирные кислоты, но синтез последних более характерен для аэробов, так как требует кислорода.

    Нуклеиновый обмен бактерий связан с генетическим обменом. Синтез нуклеиновых кислот имеет значение для процесса деления клетки. Синтез осуществляется с помощью ферментов: рестриктазы, ДНК-полимеразы, лигазы, ДНК-зависимой-РНК-полимеразы.

    Рестриктазы вырезают участки ДНК, убирая нежелательные вставки, а лигазы обеспечивают сшивку фрагментов нуклеиновой кислоты. ДНК-полимеразы ответственны за репликацию дочерней ДНК по материнской. ДНК-зкависимые-РНК-полимеразы отвечают за транскрипцию, осуществляют построение РНК на матрице ДНК.

    ЛЕКЦИЯ № 4. Генетика микроорганизмов. Бактериофаги

    1. Организация наследственного материала бактерий

    Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК, она спирализована и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На бактериальной хромосоме располагаются отдельные гены.

    Функциональными единицами генома бактерий, кроме хромосомных генов, являются:

    1) IS-последовательности;

    2) транспозоны;

    3) плазмиды.

    IS-последовательности – это короткие фрагменты ДНК. Они не несут структурных (кодирующих белок) генов, а содержат только гены, ответственные за транспозицию (способность перемещаться по хромосоме и встраиваться в различные ее участки).

    Транспозоны – это более крупные молекулы ДНК. Помимо генов, ответственных за транспозицию, они содержат и структурный ген. Транспозоны способны перемещаться по хромосоме. Их положение сказывается на экспрессии генов. Транспозоны могут существовать и вне хромосомы (автономно), но неспособны к автономной репликации.

    Плазмиды – дополнительный внехромосомный генетический материал. Представляет собой кольцевую, двунитевую молекулу ДНК, гены которой кодируют дополнительные свойства, придавая селективные преимущества клеткам. Плазмиды способны к автономной репликации, т. е. независимо от хромосомы или под слабым ее контролем. За счет автономной репликации плазмиды могут давать явление амплификации: одна и та же плазмида может находиться в нескольких копиях, тем самым усиливая проявление данного признака.

    В зависимости от свойств признаков, которые кодируют плазмиды, различают:

    1) R-плазмиды. Обеспечивают лекарственную устойчивость; могут содержать гены, ответственные за синтез ферментов, разрушающих лекарственные вещества, могут менять проницаемость мембран;

    2) F-плазмиды. Кодируют пол у бактерий. Мужские клетки (F+) содержат F-плазмиду, женские (F—) – не содержат. Мужские клетки выступают в роли донора генетического материала при конъюгации, а женские – реципиента. Они отличаются поверхностным электрическим зарядом и поэтому притягиваются. От донора переходит сама F-плазмида, если она находится в автономном состоянии в клетке.

    F-плазмиды способны интегрировать в хромосому клетки и выходить из интегрированного состояния в автономное. При этом захватываются хромосомные гены, которые клетка может отдавать при конъюгации;

    3) Col-плазмиды. Кодируют синтез бактериоцинов. Это бактерицидные вещества, действующие на близкородственные бактерии;

    4) Tox-плазмиды. Кодируют выработку экзотоксинов;

    5) плазмиды биодеградации. Кодируют ферменты, с помощью которых бактерии могут утилизировать ксенобиотики.

    Потеря клеткой плазмиды не приводит к ее гибели. В одной и той же клетке могут находиться разные плазмиды.

    2. Изменчивость у бактерий

    Различают два вида изменчивости – фенотипическую и генотипическую.

    Фенотипическая изменчивость – модификации – не затрагивает генотип. Модификации затрагивают большинство особей в популяции. Они не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу.

    Генотипическая изменчивость затрагивает генотип. В основе ее лежат мутации и рекомбинации.

    Мутации – изменение генотипа, сохраняющееся в ряду поколений и сопровождающееся изменением фенотипа. Особенностями мутаций у бактерий является относительная легкость их выявления.

    По локализации различают мутации:

    1) генные (точечные);

    2) хромосомные;

    3) плазмидные.

    По происхождению мутации могут быть:

    1) спонтанными (мутаген неизвестен);

    2) индуцированными (мутаген неизвестен).

    Рекомбинации – это обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом.

    У бактерий существует несколько механизмов рекомбинации:

    1) конъюгация;

    2) слияние протопластов;

    3) трансформация;

    4) трансдукция.

    Конъюгация – обмен генетической информацией при непосредственном контакте донора и реципиента. Наиболее высокая частота передачи у плазмид, при этом плазмиды могут иметь разных хозяев. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше этот контакт, тем большая часть донорской ДНК может быть передана реципиенту.

    Слияние протопластов – механизм обмена генетической информацией при непосредственном контакте участков цитоплазматической мембраны у бактерий, лишенных клеточной стенки.

    Трансформация – передача генетической информации в виде изолированных фрагментов ДНК при нахождении реципиентной клетки в среде, содержащей ДНК-донора. Для трансдукции необходимо особое физиологическое состояние клетки-реципиента – компетентность. Это состояние присуще активно делящимся клеткам, в которых идут процессы репликации собственных нуклеиновых кислот. В таких клетках действует фактор компетенции – это белок, который вызывает повышение проницаемости клеточной стенки и цитоплазматической мембраны, поэтому фрагмент ДНК может проникать в такую клетку.

    Трансдукция – это передача генетической информации между бактериальными клетками с помощью умеренных трансдуцирующих фагов. Трансдуцирующие фаги могут переносить один ген или более.

    Трансдукция бывает:

    1) специфической (переносится всегда один и тот же ген, трансдуцирующий фаг всегда располагается в одном и том же месте);

    2) неспецифической (передаются разные гены, локализация трансдуцирующего фага непостоянна).

    1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта