Главная страница
Навигация по странице:

  • 11. Спекание систем с ограниченной растворимостью компонентов.

  • Системы с эвтектикой

  • Системы с перитектикой

  • Системы

  • 12. Спекание систем с нерастворимыми (невзаимодействующими) компонентами.

  • 13. Особенности процессов жидкофазного спекания. Жидкофазное спекание

  • 14. Стадии жидкофазного спекания.

  • Лекция 5. Лекция 5 Твердофазное спекание порошковых материалов


    Скачать 1.07 Mb.
    НазваниеЛекция 5 Твердофазное спекание порошковых материалов
    Дата03.10.2022
    Размер1.07 Mb.
    Формат файлаpdf
    Имя файлаЛекция 5.pdf
    ТипЛекция
    #712262
    страница3 из 4
    1   2   3   4
    10. Спекание систем с полной взаимной растворимостью
    компонентов. В результате спекания таких систем образуется одна фаза
    (взаимный твердый раствор); на промежуточных стадиях спекания существуют несколько фаз: частицы исходных металлов и твердые растворы переменной концентрации. Временная зависимость сокращения объема пор при спекании в условиях развития гетеродиффузии резко отличается от закономерности, присущей однофазному порошковому телу. Усадка порошкового тела при нагреве, как правило, меньше аддитивной, рассчитанной с учетом возможной усадки каждого из компонентов. Это

    24
    объясняется более низкой подвижностью атомов в твердых растворах по сравнению с чистыми металлами и невозможностью получить при смешивании исходных компонентов абсолютно однородную смесь, из-за чего при нагреве имеется большое количество контактов, скорость диффузии атомов через которые неодинакова.
    Так, например, в системе Cu–Ni по мере повышения содержания никеля в меди усадка уменьшается и может происходить даже рост порошкового тела (проявление эффекта Френкеля). Это связано с большей в несколько раз величиной коэффициента диффузии меди в никель по сравнению с величиной коэффициента диффузии никеля в медь: в частицах меди образуются избыточные вакансии, коалесцирующие в поры, а частицы никеля увеличиваются в размерах из-за преобладания притока атомов меди над оттоком атомов никеля. Интенсивность диффузионного взаимодействия компонентов при спекании растет с увеличением межфазной поверхности, которая максимальна при 50 %-м содержании фаз.
    Кинетические закономерности уплотнения выявляют различия в поведении при спекании сплавов в зависимости от содержания второго компонента: для чистых металлов и малолегированных сплавов усадка практически исчерпывается за короткое время и наступает насыщение, а для высоколегированных сплавов скорость уплотнения остается значительной в течение длительного времени. Замедление насыщения процесса уплотнения в этом случае связано с образованием дополнительной диффузионной пористости.
    Существенная особенность спекания заключается в том, что некоторые из контактов между одноименными и разноименными частицами могут нарушаться (разрываться). Причины этого – напряжения в зоне контакта диффузионного происхождения, «исчезновение» частицы (вследствие испарения или перемещения на поверхность другой частицы) и др.
    Для решения практических задач важен вопрос о необходимой степени гомогенизации по составу сплавов, образующихся при спекании: так как

    25
    многие свойства порошковых тел определяются величиной и состоянием контактных поверхностей между частицами, в ряде случаев достижение полной гомогенизации сплава внутри частиц оказывается ненужным.
    Гомогенизация шихты перед прессованием обеспечивает при спекании более полную и однородную усадку, а также более однородный состав и свойства изделий по всему объему. Больший эффект достигается при применении вместо смеси порошков индивидуальных компонентов – порошка, представляющего собой гомогенный сплав заданного состава.
    11. Спекание систем с ограниченной растворимостью компонентов.
    В практике порошковой металлургии такие системы встречаются наиболее часто. Для них характерны диаграммы состояния как с эвтектикой и перитектикой, так и с химическими соединениями. При нагреве на промежуточных стадиях гомогенизации в порошковом теле присутствуют все фазы, имеющиеся на диаграмме состояния, практически независимо от исходного состава смеси порошков. Зависимости усадки от содержания элементов в сплаве отличны от линейных, а их характерный вид
    (направление выпуклости) может быть различным.
    Системы с эвтектикой. В двухфазной области подобных систем кривая усадки имеет ярко выраженный максимум (рис. 2.53), соответствует примерно 50%-му содержанию разнородных фаз, т.е. их наибольшей межфазной поверхности и, следовательно, максимальному диффузионному межфазному взаимодействию. Снижение усадки в области твердых растворов связано с обычным снижением диффузионной подвижности атомов. В эвтектических системах при практическом отсутствии (или чрезвычайно малой) растворимости между фазами нет зависимости усадки от величины межфазной поверхности.

    26
    Системы с перитектикой. В таких системах усадка в двухфазной области имеет четко выраженный минимум (рис. 2.54) из-за увеличения объема порошкового тела при спекании. По этой причине диффузионное межфазное взаимодействие в двухфазных перитектических системах осуществляется очень слабо. В этом случае создаются условия для беспрепятственного проявления эффекта Френкеля именно в области средних концентраций компонентов порошковых систем.
    Системы
    с
    химическими
    соединениями.
    Взаимодействие компонентов смеси порошков с образованием в процессе спекания химических соединений или интерметаллидов обычно существенно усложняет вид концентрационной зависимости усадки, и ход кривых может

    27
    быть самым различным и до выполнения эксперимента обычно непредсказуем.
    Специфичной разновидностью такого спекания многокомпонентных систем может служить так называемое реакционное спекание, когда при нагреве порошковой формовки совмещают процессы собственно спекания и образования химического соединения. Например, при спекании формовки из порошка кремния в среде азота происходит образование Si
    3
    N
    4
    , которое сопровождается увеличением ее объема на 22 % , и за счет этого происходит частичное заполнение порового пространства. Плотность порошкового тела после реакционного спекания зависит от исходной пористости формовки, фракционного состава порошка кремния, температурно-временных условий спекания. В общем случае свойства материалов после спекания зависят от целого ряда факторов: полноты гомогенизации в области ограниченных твердых растворов, пористости, совершенства межфазных и однофазных контактов и др.
    Роль гетеродиффузии сводится к обеспечению выравнивания концентраций элементов в областях ограниченной растворимости, причем достижение гомогенности в большинстве случаев желательно (при предельных концентрациях многие свойства ограниченных твердых растворов максимальны).
    12. Спекание систем с нерастворимыми (невзаимодействующими)
    компонентами. Б.Я. Пинес сформулировал термодинамическое условие припекания двух частиц разнородных невзаимодействующих компонентов:
    α
    АБ
    < (α
    А
    + α
    Б
    ), (1) т.е. поверхностная энергия образовавшейся межфазной границы АВ должна быть меньше, чем сумма поверхностных энергий частиц А и В; в противном случае порошковое тело спекаться не будет.
    Механизм и кинетика припекания оказываются существенно различными для двух возможных случаев при соблюдении условия (1):
    α
    АБ
    < (α
    А
    – α
    Б
    ) (2)

    28
    α
    АБ
    >(α
    А
    – α
    Б
    ). (3)
    В случае, когда выполняется соотношение (3), энергетически целесообразно покрытие поверхности частицы вещества с большей поверхностной энергией веществом с меньшей поверхностной энергией (рис.
    2.55). Вначале частица такого вещества покроется слоем атомов второго вещества (с помощью механизма поверхностной диффузии или переносом через газовую фазу), а затем контактная площадь между частицей А и частицей Б, покрытой слоем вещества А, увеличивается, что сопровождается уменьшением суммарной поверхности в системе А–Б и, соответственно, ее свободной энергии. Кинетика этого этапа припекания близка к кинетике припекания двух однородных сферических частиц, хотя вещество в область приконтактного перешейка будет поступать от одной частицы А, а не от обеих частиц А и Б. Слияние сферических частиц А и Б должно завершиться образованием сферического тела, ядром которого будет частица Б.
    Когда нижняя граница величины α
    АБ
    задается условием (2) (более распространенный случай), припекание частиц существенно отличается от рассмотренного выше. Распределение вещества А и Б в области контактного перешейка определяется границей, имеющей форму участка сферы с выпуклостью в сторону частицы с меньшей поверхностной энергией, и частица вещества с большей поверхностной энергией как бы вдавливается в частицу вещества с меньшей поверхностной энергией. Полное уплотнение порошкового тела при этом не достигается.

    29
    13. Особенности процессов жидкофазного спекания. Жидкофазное
    спеканиеспекание порошкового тела при температуре, обеспечивающей образование жидкой фазы. Спекание с участием жидкой фазы имеет широкое техническое применение при производстве различных типов порошковых композиционных материалов. Термодинамическим условием эффективного жидкофазного спекания является стремление многокомпонентной системы к минимуму свободной поверхностной энергии и химического потенциала, как и при твердофазном спекании. Но в отличие от твердофазного при жидкофазном спекании из-за большей подвижности системы «жидкое–
    твердое» более наглядно проявляется действие основных движущих сил объемного уплотнения порошкового тела – сил капиллярного стягивания. В присутствии жидкой фазы при определенных условиях облегчается развитие сил сцепления между отдельными частицами порошка и может сформироваться малопористая структура (П < 1%). При жидкофазном спекании в порошковом теле возникает своего рода капиллярная система
    (размеры частиц порошка соизмеримы с поперечными размерами поровых каналов), состоящая из твердой, жидкой и газообразной фаз.
    В связи с этим большое значение приобретает смачивание твердых частиц жидкой фазой (рис. 2.56), мерой которого является величина краевого угла смачивания θ: cos θ = (σ
    т
    – σ
    т-ж
    ) / σ
    ж
    , (2.58) где σ
    т
    , σ
    т-ж
    , σ
    ж
    – соответственно, поверхностные энергии на границах раздела твердое тело-газ, твердое тело-жидкость и жидкость-газ.

    30
    Термодинамическим условием смачивания является уменьшение свободной энергии системы при превращении границ раздела твердое тело- газ и жидкость–газ в границу раздела твердое тело–жидкость, т.е. работа адгезии должна быть положительна.
    При полном смачивании θ = 0°, при полном несмачивании θ = 180°, при
    θ < 90° смачивание считают хорошим, а при θ > 90° смачивание плохое и образовавшаяся жидкая фаза тормозит спекание, препятствуя уплотнению порошкового тела.
    Смачивание улучшается (угол θ уменьшается) при уменьшении σ
    т-ж
    (например, при наличии в контактирующих фазах поверхностно-активных веществ или при изменении температуры). Изменение величины σ
    т-ж может также быть следствием изменения величин σ
    т и σ
    ж
    (экспериментально установлено, что с ростом σ
    т растет и σ
    т-ж
    ). При увеличении времени контакта жидкое–твердое и температуры краевой угол уменьшается и смачивание улучшается.
    В рамках термодинамической теории смачивания, основанной на существовании химического взаимодействия на межфазной границе твердое тело-жидкость, это объясняется условиями прохождения химической реакции на этой границе. Повышение температуры приводит к уменьшению свободной энергии системы и уменьшению величины σ
    т-ж
    , а влияние времени связано с продолжительностью установления равновесия при химическом взаимодействии фаз.
    Величина краевого угла смачивания зависит от окружающей атмосферы, степени её очистки, способности к образованию веществом поверхностных пленок. Известно, что жидкие металлы хорошо смачивают чистые металлические поверхности (краевой угол смачивания обычно не превышает 30–40° и часто наблюдается полное смачивание) и поверхности тех неметаллических или металлоподобных компонентов (оксидов, боридов, карбидов и нитридов различных металлов, графита), с которыми они вступают в химическое взаимодействие.

    31
    Появление жидкой фазы при нагреве связано с расплавлением более легкоплавкого компонента или структурной составляющей (например, эвтектики) спекаемого материала, а также с «контактным» плавлением, когда жидкая фаза возникает при температуре, более низкой, чем температура плавления указанных составляющих порошкового тела. При этом механизм спекания с участием жидкой фазы зависит от характера диаграммы состояния соответствующей системы компонентов. Чем лучше смачивание, тем большие количества жидкой фазы могут удерживаться в порошковом теле во время спекания, не вытекая и не искажая его форму.
    В присутствии жидкой фазы существенно увеличивается скорость само- и гетеродиффузии атомов, что ускоряет сплавообразование, и облегчается перемещение твердых частиц относительно друг друга, способствуя заполнению пор веществом. В связи с этим при жидкофазном спекании можно обеспечить получение практически беспористых порошковых изделий (материалов).
    Различают спекание порошкового тела с присутствием жидкой фазы до конца изотермической выдержки и с ее исчезновением вскоре после появления (хотя нагрев продолжается), а также специфическую разновидность первого типа процесса жидкофазного спекания, которую называют инфильтрацией порошковой формовки.
    В любом случае объем образующейся при нагреве жидкой фазы должен составлять от 3–5 до 50 % (оптимальное количество – 25–35 %). Если жидкой фазы образуется слишком много, то порошковая формовка может
    «поплыть» – потерять свою форму. При низком содержании жидкой фазы теряются преимущества жидкофазного спекания – требуются большее время на спекание, большая температура, получается пористое изделие и пр.
    Рассмотрим основные особенности, характерные для спекания в присутствии жидкой фазы.
    1. Образование жидкой фазы при спекании, как правило, сопровождается интенсификацией усадки, что в принципе позволяет

    32
    получить спеченный материал с очень высокой плотностью и малой остаточной пористостью при относительно коротком времени процесса; в связи с этим спекание в присутствии жидкой фазы часто представляет собой альтернативу использованию высоких давлений формования или больших температуры и длительности выдержки при спекании для получения материала высокой плотности. Для некоторых порошков очень твердых материалов или сплавов жидкофазное спекание может быть единственно возможным способом получения высокой плотности конечного продукта.
    2. Эффект увеличения усадки зависит как от физико-химических характеристик компонентов, так и от количества жидкой фазы, размера частиц тугоплавкой составляющей и начальной пористости брикетов.
    Увеличение количества легкоплавкой составляющей способствует усадке, но при наличии некоторой взаимной растворимости компонентов изменение плотности при жидкофазном спекании может осложняться процессами гетеродиффузии; использование более мелких фракций тугоплавкой составляющей способствует увеличению усадки.
    3. Значительную роль при спекании играет величина исходной пористости. Усадка брикетов с большой начальной пористостью затрудняет получение изделий с высокой точностью размеров, а спекание брикетов с низкой исходной пористостью может привести даже к их росту при спекании. Это связано с тем, что при образовании жидкой фазы могут образовываться изолированные поры, давление газа в которых может повыситься (из-за восстановления оксидных пленок), что будет препятствовать усадке.
    4. В некоторых случаях жидкая фаза присутствует при спекании лишь в течение ограниченного времени и спекание осуществляется в основном в твердой фазе. Это связано с тем, что протекание диффузионных процессов с участием жидкой фазы может привести к образованию других, более тугоплавких фаз или к растворению жидкой фазы в твердой.

    33 5. Процесс жидкофазного спекания часто используют для получения специальных структур, обладающих особенными механическими свойствами
    (например, антифрикционных материалов). Это возможно в том случае, если фаза, являющаяся жидкой во время спекания, сохраняет свои индивидуальные характеристики и в спеченном материале.
    6. Управление объемными изменениями при жидкофазном спекании, позволяет получить высокопористые порошковые материалы и изделия с размерами, практически равными размерам исходных прессовок. Для этого требуется создание бипористой структуры порошкового тела, содержащей мелкие естественные поры и крупные искусственные поры. Образование крупных пор происходит за счет улетучивающегося порообразователя
    (двууглекислого аммония), вводимого в состав порошковой композиции на этапе прессования формовки.
    14. Стадии жидкофазного спекания. В 1938 г. Прайс, Смителс и
    Вильямс сформулировали представление об уплотнении при жидкофазном спекании как следствие двух последовательных стадий. По их мнению, при появлении жидкой фазы сначала (первая стадия) твердые частицы перемещаются до состояния плотной укладки под влиянием сил поверхностного натяжения смачивающей их жидкости; частицы смещаются относительно друг друга благодаря возникновению отрицательного капиллярного давления в жидкостных «мостиках» (манжетах), соединяющих эти частицы. На второй стадии (после завершения периода свободного перемещения частиц) происходит дальнейшее уплотнение материала благодаря перекристаллизации твердой фазы через жидкую, при условии наличия растворимости твердой фазы в жидкой.
    Позднее (1953 г., Кеннон и Ленел) был установлен еще один механизм, приводящий к уплотнению при жидкофазном спекании: на заключительной стадии спекания в процессе завершения перекристаллизации или сразу после завершения первой стадии (при отсутствии растворимости твердой фазы в

    34
    жидкости) развивается процесс срастания частиц тугоплавкого компонента в жесткий каркас («скелет»).
    Было также отмечено, что уплотнение при перекристаллизации происходит еще и потому, что одновременно с ростом зерен изменяется и их форма. Результатом этого процесса является более плотное примыкание частиц друг к другу.
    Современные теоретические разработки по жидкофазному спеканию базируются на указанных выше представлениях о трех возможных механизмах уплотнения, развивающихся с появлением жидкой фазы последовательно при частичном наложении процессов: жидкофазное течение
    (механическая перегруппировка), т.е. перемещение частиц под действием капиллярных сил; растворение–осаждение (перекристаллизация или химическая перегруппировка частиц тугоплавкой фазы), т.е. перенос через жидкость растворенного в ней вещества тугоплавкой фазы с поверхности частиц меньшего размера на поверхность частиц большего размера; твердофазное спекание, т.е. срастание частиц тугоплавкой фазы (образование жесткого каркаса или «скелета»).
    Кинетика этих процессов существенно зависит от степени однородности смеси компонентов, начальной пористости порошкового тела, количества образующейся жидкой фазы, линейного размера частиц, характера смачивания твердой фазы жидкостью, взаимной растворимости фаз и достаточно большого количества других факторов.
    Наибольшая степень уплотнения достигается на этапе перегруппировки частиц. Для систем с невзаимодействующими компонентами этот механизм является основным. При этом количество жидкой фазы в подобной системе должно быть максимальным [35–50 % (об.)].
    Для систем с взаимодействующими компонентами эффективное уплотнение достигается при меньшем количестве жидкой фазы. В этом случае заметное уплотнение достигается за счет дополнительной усадки по механизму химической перегруппировки.

    35
    1   2   3   4


    написать администратору сайта