|
Лекции по схемотехнике ЭВМ. Лекция Базовые понятия цифровой электроники версия для печати и pda в лекции рассказывается о базовых терминах цифровой электроники, о цифровых сигналах, об уровнях представления цифровых устройств, об их электрических и временных параметрах
Введение в цифровую схемотехнику
|
|
|
| 5. Лекция: Комбинационные микросхемы. Часть 1: версия для печати и PDA В лекции рассказывается о комбинационных микросхемах: шифраторах, дешифраторах, мультиплексорах и компараторах кодов, об их алгоритмах работы, параметрах, типовых схемах включения, а также о реализации на их основе некоторых часто встречающихся функций.
|
|
|
| Комбинационные микросхемы выполняют более сложные функции, чем простые логические элементы. Их входы объединены в функциональные группы и не являются полностью взаимозаменяемыми. Например, любые два входа логического элемента И-НЕ совершенно спокойно можно поменять местами, от этого выходной сигнал никак не изменится, а для комбинационных микросхем это невозможно, так как у каждого входа — своя особая функция.
Объединяет комбинационные микросхемы с логическими элементами то, что они не имеют внутренней памяти. То есть уровни их выходных сигналов всегда однозначно определяются текущими уровнями входных сигналов и никак не связаны с предыдущими значениями входных сигналов. Любое изменение входных сигналов обязательно изменяет состояние выходных сигналов. Именно поэтому логические элементы иногда также называют комбинационными микросхемами, в отличие от последовательных (или последовательностных) микросхем, которые имеют внутреннюю память и управляются не уровнями входных сигналов, а их последовательностями.
Строго говоря, все комбинационные микросхемы внутри построены из простейших логических элементов, и эта их внутренняя структура часто приводится в справочниках. Но для разработчика цифровой аппаратуры эта информация обычно лишняя, ему достаточно знать только таблицу истинности, только принцип преобразования входных сигналов в выходные, а также величины задержек между входами и выходами и уровни входных и выходных токов и напряжений. Внутренняя же структура важна для разработчиков микросхем, а также в тех редчайших случаях, когда надо построить новую комбинационную микросхему из микросхем простых логических элементов.
Состав набора комбинационных микросхем, входящих в стандартные серии, был определен исходя из наиболее часто встречающихся задач. Требуемые для этого функции реализованы в комбинационных микросхемах наиболее оптимально, с минимальными задержками и минимальным потреблением мощности. Поэтому пытаться повторить эту уже проделанную однажды работу не стоит. Надо просто уметь грамотно применять то, что имеется.
Дешифраторы и шифраторы
Функции дешифраторов и шифраторов понятны из их названий. Дешифратор преобразует входной двоичный код в номер выходного сигнала (дешифрирует код), а шифратор преобразует номер входного сигнала в выходной двоичный код (шифрует номер входного сигнала). Количество выходных сигналов дешифратора и входных сигналов шифратора равно количеству возможных состояний двоичного кода (входного кода у дешифратора и выходного кода у шифратора), то есть 2n, где n — разрядность двоичного кода (рис. 5.1). Микросхемы дешифраторов обозначаются на схемах буквами DC (от английского Decoder), а микросхемы шифраторов — CD (от английского Coder).
Рис. 5.1. Функции дешифратора (слева) и шифратора (справа)
На выходе дешифратора всегда присутствует только один сигнал, причем номер этого сигнала однозначно определяется входным кодом. Выходной код шифратора однозначно определяется номером входного сигнала.
Рассмотрим подробнее функцию дешифратора.
В стандартные серии входят дешифраторы на 4 выхода (2 разряда входного кода), на 8 выходов (3 разряда входного кода) и на 16 выходов (4 разряда входного кода). Они обозначаются соответственно как 2–4, 3–8, 4–16. Различаются микросхемы дешифраторов входами управления (разрешения/запрета выходных сигналов), а также типом выхода: 2С или ОК. Выходные сигналы всех дешифраторов имеют отрицательную полярность. Входы, на которые поступает входной код, называют часто адресными входами. Обозначают эти входы 1, 2, 4, 8, где число соответствует весу двоичного кода (1 — младший разряд, 2 — следующий разряд и т.д.), или А0, А1, А2, А5. В отечественных сериях микросхемы дешифраторов обозначаются буквами ИД. На рис. 5.2 показаны три наиболее типичных микросхемы дешифраторов.
Рис. 5.2. Примеры микросхем дешифраторов
Код на входах 1, 2, 4, 8 определяет номер активного выхода (вход 1 соответствует младшему разряду кода, вход 8 — старшему разряду кода). Входы разрешения С1, С2, С3 объединены по функции И и имеют указанную на рисунке полярность. Для примера в табл. 5.1 приведена таблица истинности дешифратора ИД7 (3—8). Существуют и дешифраторы 4–10 (например, ИД6), которые обрабатывают не все возможные 16 состояний входного кода, а только первые 10 из них.
Первые три строки таблицы соответствуют запрету выходных сигналов. Разрешением выхода будет единица на входе С1 и нули на входах С2 и С5. Символ "Х" обозначает безразличное состояние данного входа (неважно, нуль или единица). Нижние восемь строк соответствуют разрешению выходных сигналов. Номер активного выхода (на котором формируется нулевой сигнал) определяется кодом на входах 1, 2, 4, причем вход 1 соответствует младшему разряду кода, а вход 4 — старшему разряду кода.
Таблица 5.1. Таблица истинности дешифратора 3–8 (ИД7)
| Входы
| Выходы
| C1
| -C2
| -C3
| 4
| 2
| 1
| 0
| 1
| 2
| 3
| 4
| 5
| 6
| 7
| 0
| X
| X
| X
| X
| X
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| X
| 1
| X
| X
| X
| X
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| X
| X
| 1
| X
| X
| X
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 1
| 1
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 1
| 0
| 1
| 1
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 1
| 1
| 1
| 1
| 0
| 0
| 1
| 0
| 0
| 1
| 1
| 1
| 1
| 0
| 1
| 1
| 1
| 1
| 0
| 0
| 1
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 1
| 1
| 1
| 0
| 0
| 1
| 1
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 1
| 1
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| Наиболее типичное применение дешифраторов состоит именно в дешифрировании входных кодов, при этом входы С используются как стробирующие, управляющие сигналы. Номер активного (то есть нулевого) выходного сигнала показывает, какой входной код поступил. Если нужно дешифровать код с большим числом разрядов, то можно объединить несколько микросхем дешифраторов (пример показан на рис. 5.3).
Рис. 5.3. Увеличение количества разрядов дешифратора
При этом старшие разряды кода подаются на основной дешифратор, выходы которого разрешают работу нескольких дополнительных дешифраторов. На объединенные входы этих дополнительных дешифраторов подаются младшие разряды входного кода. Из пяти микросхем дешифраторов 2–4 можно получить дешифратор 4–16, как показано на рисунке (хотя лучше, конечно, взять готовую микросхему). Точно так же из девяти микросхем 3–8 можно получить дешифратор 6–64, а из семнадцати микросхем 4–16 — дешифратор 8–256. Еще одно распространенное применение дешифраторов — селекция (выбор) заданных входных кодов. Появление отрицательного сигнала на выбранном выходе дешифратора будет означать поступление на вход интересующего нас кода. В данном случае увеличивать число разрядов входного селектируемого кода гораздо проще, чем в предыдущем (см. рис. 5.3). Например, две микросхемы 4–16 позволяют селектировать 8-разрядный код (рис. 5.4). В примере на рисунке селектируется 16-ричный код 2А (двоичный код 0010 1010). При этом один дешифратор работа ет с младшими четырьмя разрядами кода, а другой — со старшими четырьмя разрядами. Объединяются дешифраторы так, что один из них разрешает работу другого по входам –С1 и –С2. Применяя механические переключатели выходов дешифраторов (тумблеры, перемычки), можно легко изменять код, селектируемый данной схемой.
Рис. 5.4. Селектирование кода на дешифраторах
Еще одно важное применение дешифраторов состоит в перекоммутации одного входного сигнала на несколько выходов. Или, другими словами, дешифратор в данном случае выступает в качестве демультиплексора входных сигналов, который позволяет разделить входные сигналы, приходящие в разные моменты времени, на одну входную линию (мультиплексированные сигналы). При этом входы 1, 2, 4, 8 дешифратора используются в качестве управляющих, адресных, определяющих, на какой выход переслать пришедший в данный момент входной сигнал (рис. 5.5), а один из входов С выступает в роли входного сигнала, который пересылается на заданный выход. Если у микросхемы имеется несколько стробирующих входов С, то оставшиеся входы С можно использовать в качестве разрешающих работу дешифратора.
| |
|
|