Линейные балансовые модели в экономике
Скачать 0.54 Mb.
|
Линейные балансовые модели в экономике Балансовая модель производства является одной из наиболее простых математических моделей. Она записывается в виде системы уравнений, каждое из которых выражает требование равенства (баланса) между количеством продукции, производимой отдельным экономическим объектом, и совокупной потребностью в этом продукте. Под экономическим объектом обычно понимают так называемую «чистую прибыль». Например, чтобы правильно отразить взаимосвязи между машиностроением и металлургией, необходимо исключить продукцию металлургической и других отраслей из продукции машиностроения, а в продукции металлургической промышленности не учитывать произведенные на металлургических заводах продукты машиностроения и других отраслей. Таким образом, продукция «чистой отрасли» складывается из продукции специализированных предприятий, очищенной от непрофильных ее видов, и продукции, соответствующей профилю данной отрасли, но произведенной на предприятиях, относящихся к другим отраслям I. Межотраслевой баланс Балансовые модели основываются на понятии межотраслевого баланса, который представляет собой таблицу, характеризующую связи между отраслями (экономическими объектами) экономической системы. Предположим, что экономическая система состоит из n взаимосвязанных отраслей P1, Р2, ..., Рn. Валовой продукт i-й отрасли обозначим через Xi (X1 – валовой продукт P1 Х2 – валовой продукт Р2, ..., Хn валовой продукт Рn). Конечный продукт каждой отрасли обозначим буквой Y с индексом, соответствующим ее номеру (Yi - конечный продукт Pi). Отрасли взаимосвязаны, т.е. каждая из них использует продукцию других отраслей в качестве сырья, полуфабрикатов и т. п. Пусть Xij– затраты продукции i-й отрасли на производство продукции Рj. Условно чистую продукцию i-й отрасли обозначим Vi. Если перечисленные показатели представлены в межотраслевом балансе в тоннах, литрах, километрах, штуках и т. д., то говорят о межотраслевом балансе в натуральном, выражений. Мы же договоримся, что под Xi, Уj, Vj и Xij будем понимать выраженную в некоторых фиксированных ценах стоимость соответствующей продукции. Такой баланс называется стоимостным. Всю информацию об экономической системе сведем в таблицу – межотраслевой баланс (таблица). Таблица Анализ общей структуры межотраслевого баланса
Первый квадрант. В таблице каждая отрасль представлена двояким образом. Как элемент строки, она выступает в роли поставщика производимой ею продукции, а как элемент столбца – в роли потребителя продукции других отраслей экономической системы. Если Р1 – производство электроэнергии, а P2 – угольная промышленность, то Х12 – годовые затраты электроэнергии на производство угля, а Х21 – аналогичные затраты угля на производство электроэнергии. Р1 выступает как поставщик электроэнергии и как потребитель угля. Отрасль Р1 является также потребителем собственной продукции. Электроэнергия стоимостью Х11 денежных единиц используется внутри отрасли на обеспечение работы электротехники, на освещение производственных помещений и т. д. Аналогичный смысл имеет X22 и все Xii. В общем случае, Хi1, Хi2, ..., Хii, ..., Хin – объемы поставок продукции i-й отрасли отраслям, входящим в экономическую систему. Сумма этих поставок Xi1 + Xi2 +…+ Xin = ΣXij выражает суммарное производственное потребление продукции Рi и записывается в i-й строке (n + 1)-го столбца таблицы. В нашем примере X11 + X12 +…+ X1n = ΣX1j есть суммарное производственное потребление электроэнергии, а X21 + X22 +…+ X2n = ΣX2j – суммарные затраты угля на производственные нужды отраслей, входящих в экономическую систему. Посмотрим теперь на Pi как на элемент столбца. В столбце с номером i расположены объемы текущих производственных затрат продукции отраслей, входящих в экономическую систему, на производство продукции i-й отрасли. В (n + 1)-й строке указанного столбца записана сумма текущих производственных затрат Рi за год: = X1i +X2i + … +Xni Просуммировав первые nэлементов (n + 1)-й строки, получим величину текущих производственных затрат всех отраслей: + +…+ +…+ = (1) Сумма первых nэлементов (n + 1)-го столбца + +…+ +…+ = (2) есть стоимость продукции всех отраслей, которая была использована на текущее производственное потребление. Нетрудно убедиться в том, что суммы (1) и (2) состоят из одних и тех же слагаемых (всех Xkj) и поэтому равны между собой: = (3) Равенство (3) означает, что текущие производственные затраты всех отраслей равны их текущему производственному потреблению. Число есть так называемый промежуточный продукт экономической системы. Элементы, стоящие на пересечении первых (n + 1) строк и первых (n + 1) столбцов, образуют первый квадрант (четверть). Это важнейшая часть межотраслевого баланса, поскольку именно в ней содержится информация о межотраслевых связях. Второй квадрант расположен в таблице справа от первого. Он состоит из двух столбцов. Первый из них – столбец конечного потребления продукции отраслей. Под конечным потреблением понимают личное и общественное потребление, не идущее на текущие производственные нужды. Сюда включаются накопление и возмещение выбытия основных фондов, прирост запасов, личное потребление населения, расходы на содержание государственного аппарата и оборону, затраты по обслуживанию населения (здравоохранение, просвещение и т. д.), сальдо экспорта и импорта продукции. Во втором столбце представлены объемы валовой продукции отраслей. Суммарный (валовой) выпуск i-й отрасли определяется как (4) Равенство (4) означает, что вся произведенная i-й отраслью продукция потребляется. Часть ее, в форме суммарного производственного потребления продукции Pi идет на производственные нужды отраслей, входящих в экономическую систему. Другая часть потребляется в форме конечного продукта. Так, часть продукции угольной промышленности, как мы уже отмечали, используется внутри экономической системы, а другая – в качестве сырья, топлива – будет потреблена отраслями, не вошедшими в состав экономической системы, и составит часть экспорта страны, пойдет на отопление жилищ и т. п. Квадранты I и II отражают баланс между производством и потреблением. Ко второму квадранту относится также и та часть (n+1)-й строки, в которой расположены суммарный конечный продукт и суммарный валовой продукт Третий квадрант расположен в таблице под первым. Он состоит из двух строк. Одна из них содержит объем валового продукта по отраслям, а другая – условно чистую продукцию отраслей V1, V2 ,..., Vn. В состав условно чистой продукции входят амортизационные отчисления, идущие на возмещение выбытия основных фондов, заработная плата, прибыль и т.д. Она определяется как разность между валовым продуктом отрасли и суммой ее текущих производственных затрат. Так, для Рi имеет место равенство (5) Первый и третий квадранты отражают стоимостную структуру продукции каждой отрасли. Так, равенство (5) показывает, что стоимость валового продукта Xi i-й отрасли складывается из стоимости той части продукции отраслей системы, которая была использована для производства Хi, из амортизационных отчислений, затрат на оплату труда, из чистого дохода отрасли, из стоимости ресурсов, не производящихся внутри экономической системы, и т.д. Используя равенства (4) и (5), подсчитаем суммарный валовой продукт. Из (4) следует, что (6) а из (5) получаем: (7) Вторые слагаемые в правых частях равенств (6) и (7) выражают одну и ту же величину – промежуточный продукт. Отсюда и из равенства левых частей (6) и (7) делаем вывод о равенстве первых слагаемых: = (8) Итак, суммарный конечный продукт равен суммарной условно чистой продукции. Четвертый квадрант непосредственного отношения к сфере производства не имеет, поэтому мы его заполнять не будем. В IV квадранте показывается, как полученные в сфере материального производства первичные доходы населения (заработная плата, личные доходы членов кооперативов, денежное довольствие военнослужащих и т. д.), государства (налоги, прибыль с производства государственного сектора и т. д.), кооперативных и других предприятий перераспределяются через различные каналы (финансово-кредитную систему, сферу обслуживания, общественно-политические организации и т. д.), в результате чего образуются конечные доходы населения, государства и т. д. |