Материаловедение. Мой вариант. Линией ликвидус
Скачать 420.91 Kb.
|
Термообработка стали 45Термообработка стали 45 - конструкционная углеродистая. После предварительной термообработки стали 45 - нормализации, довольно легко проходит механическую обработку. Точение, фрезеровку и т. д. Получают детали, например,типа вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки. После окончательной термообработки стали 45 (закалка), детали приобретают высокую прочность и износостойкость. Часто шлифуются. Высокое содержание углерода (0,45%) обеспечивает хорошую закаливаемость и соответственно высокую твёрдость поверхности и прочность изделия. Сталь 45 калят «на воду». То есть после калки деталь охлаждают в воде. После олаждения деталь подвегается низкотепмературному отпуску при температуре 200-300 градусов Цельсия. При такойтермообработки стали 45 получают твердость порядка 50 HRC. Термообрабтка стали 45 и применение изделий: Кулачки станочных патронов, согласно указаниям ГОСТ, изготовляют из сталей 45 и 40Х. Твёрдость Rc = 45 -50. В кулачках четырёхкулачных патронов твёрдость резьбы должна быть в пределах Rс = 35-42. Отпуск кулачков из стали 45 производится при температуре 220-280°, из стали 40Х при 380-450° в течение 30-40 мин. Расшифровка марки стали 45: марка 45 означает, что в стали содержится 0,45% углерода,C 0,42 - 0,5; Si 0,17 - 0,37;Mn 0,5 - 0,8; Ni до 0,25; S до 0,04; P до 0,035; Cr до 0,25; Cu до 0,25; As до 0,08. 180. Охарактеризуйте свойства, строение, приведите примеры применения жаропрочных и жаростойких сталей. Жаропрочными называют стали и сплавы, сохраняющие при повышенных температурах в течение определенного времени высокую механическую прочность и обладающие при этом достаточной жаростойкостью. Жаростойкими (окалиностойкими) называют стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 0 С, работающие в ненагруженном или слабонагруженном состоянии. Жаропрочность характеризуется, в основном, пределами ползучести и длительной прочности. Ориентировочно о жаропрочности судят также по механическим свойствам, определяемым кратковременным испытанием на растяжение при рабочей температуре. Дополнительные характеристики жаропрочности: длительная пластичность, релаксационная стойкость, предел выносливости, термостойкость и др. Жаропрочность стали (сплава) определяется химическим составом и структурой; к числу элементов, повышающим жаропрочность, относятся молибден, вольфрам, ванадий, ниобий, титан, кобальт, алюминий и отчасти хром и никель. Последний, наряду с марганцем, имеет значение, главным образом, как аустенитообразующий элемент (поскольку аустенитная структура создает наибольшую жаропрочность стали). На жаропрочные свойства хром влияет меньше, чем многие другие элементы. Однако его присутствие в стали или сплаве наряду с алюминием и кремнием повышает их жаростойкость (окалиностойкость). Поэтому хром - обязательный компонент жаропрочных сталей и сплавов. Классификация К жаропрочным сталям относят сплавы на основе железа, если содержание последнего превышает 50 %. В зависимости от суммарного содержания легирующих элементов жаропрочные стали могут быть низко-, средне- и высоколегированными. В низколегированной стали суммарное содержание легирующих элементов не превышает 4-5 %. Среднелегированной называется сталь с суммарным содержанием легирующих элементов от 5 до 9 %, причем содержание каждого из них не должно превышать 5 %. Высоколегированной называют сталь, в которой содержание любого легирующего элемента превосходит 5 %, либо суммарное содержание всех легирующих элементов - более 10 %. По микроструктуре (получаемой после охлаждения на воздухе с высокой температуры) жаропрочные стали подразделяют на семь классов: перлитный, мартенситный, мартенситно-ферритный, ферритный, аустенитно-мартенситный, аустенитно-ферритный, аустенитный. Низколегированные стали относятся к перлитному классу, среднелегированные - к перлитному, мартенситному или мартенситно-ферритному, высоколегированные - к любому из перечисленных классов, кроме перлитного. К сплавам на железоникелевой основе относятся сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе. Суммарное содержание железа и никеля не менее 65 %. К сплавам на никелевой основе относятся сплавы, содержащие не менее 50 % Ni, основная структура которых является твердым раствором хрома и других легирующих элементов в никеле (содержание железа не более 6-8 %). Стали перлитного класса Среди низколегированных сталей высокой жаропрочностью отличаются молибденосодержащие стали, например, хромомолибденовые, хромомолибденованадиевые, хромомолибденовольфрамованадиевые, имеющие достаточно высокие сопротивление ползучести и длительную прочность при температурах до 565-580 °С. Такие стали условно называют теплоустойчивыми. Химический состав теплоустойчивых сталей перлитного класса приведен в ГОСТ 20072-74, ГОСТ 4543-71, ТУ 14-1-1391-75. Они содержат 0,5-3,3 % Cr; 0,25-1,2 % Мо; 0,15-0,8 % V. Некоторые марки содержат 0,3-0,8 % W либо Nb. Эти стали применяют для изготовления различных деталей в котлостроении, работающих длительное время (10 000-100 000 ч) при температурах 500-580 °С, в частности, для паропроводных и пароперегревательных труб, а также для проката и поковок, используемых в турбинах и паровых котлах высокого давления. Механические свойства сортового металла из перлитных сталей, предусмотренные ГОСТ или существующими ТУ, а также рекомендуемые режимы термической обработки приведены в табл. 1. Механические свойства при повышенных температурах, определяемые кратковременным испытанием на растяжение, как правило, не регламентируются. Решающее значение имеют нормы длительной прочности и ползучести при рабочих температурах в зависимости от длительности службы за время 10 000-100 000 ч (табл.2). Сведения о примерном назначении сталей перлитного класса и их рабочие температуры приведены в табл. 3. Стали мартенситного класса Стали мартенситного классасодержат 4,5-12 % Cr, а также в значительно меньшем количестве Ni, W, Mo, V. Стали марок 15Х5, 15Х5М, 15Х5ВФ и 15Х8ВФ широко применяют для изготовления элементов аппаратуры нефтеперерабатывающих заводов - деталей насосов, задвижек, крепежных деталей, крекинговых труб, работающих при температурах 550-600 °С. Стали этой же группы с более высоким содержанием Cr (6-10 %) и с повышенным содержанием Si (2-3 %), в основном, применяют для изготовления клапанов двигателей внутреннего сгорания. Сталь 11Х11Н2ВМФ(ЭИ962) применяют для дисков компрессоров и для других деталей, работающих при температурах до 600 °С с ограниченным сроком службы. Механические характеристики мартенситных сталей приведены в табл. 1 характеристики жаропрочности - в табл. 12.2. Стали мартенситно-ферритного класса Стали мартенситно-ферритного классасодержат в структуре кроме мартенсита 10-25 % феррита. Основная легирующая добавка и в этих сталях - Cr (11-13 %), наряду с которым присутствуют менее значительные присадки Ni, W, Mo, Nb, V (модифицированные хромистые стали). Их термическая обработка заключается либо в закалке с отпуском, либо в нормализации с отпуском. Механические свойства при надлежащей температуре отпуска практически равноценны. Уровень жаропрочных свойств после оптимальной термической обработки для большинства сталей мартенситно-ферритного класса также примерно одинаков. Однако наиболее высокие (при обработке на одинаковую твердость) характеристики жаропрочности при 500-600 °С у стали 18Х12ВМБФР(ЭИ993). Стали аустенитного класса Стали аустенитногокласса- в основном хромоникелевые стали с содержанием Cr и Ni в пределах от 7 до 25 % каждого, наряду с которыми присутствуют W, Mo, Ti, Nb и др. Это самая многочисленная группа жаропрочных (и жаростойких) сталей (см. ГОСТ 5632-72). Эти стали изготовляют в виде сортового проката и применяют в турбостроении для лопаток и дисков турбин, а также для крепежных деталей. Ориентировочная рабочая температура для стали 15Х12ВНМФ(ЭИ802) - 550-580 °С и 570-600 °С - для стали 18Х12ВМБФР(ЭИ993). 4. Стали аустенитного класса (ГОСТ 5632–72) Для получения структуры аустенита эти стали должны содержать большое количества хрома, никеля и марганца. Для достижения высокой жаропрочности их дополнительно легируют Mo, W, V, Nb и B. Эти стали идут для изготовления деталей, работающих при 500–750ОС. Жаропрочность аустенитных сталей выше, чем перлитных и мартенситно-ферритных. Сталей. Аустенитные стали пластичны и хорошо свариваются, однако обработка их резанием затруднена. Аустенитные стали по способу упрочнения делят на три группы: твердые растворы, содержащие сравнительно мало легирующих элементов; твердые растворы с карбидным упрочнением. В этом случае упрочняющими фазами могут быть как первичные (TiC, VC, ZrC, NbC и др.), так и вторичные карбиды (М23С6, М7С3, М6С), выделяющиеся из твердого раствора; твердые растворы с интерметаллидным упрочнением. Упрочняющей фазой в этих сталях является γ-фаза типа Ni3Ti, Ni3Al, Ni3Nb и др. Стали с интеметаллидным упрочнением более жаропрочны, чем стали с карбидным упрочнением. Аустенитные жаропрочные стали со структурой твердых растворов (например, 09Х14Н16Б и 09Х14Н18В2БР) предназначены для работы при 600–700ОС, их применяют после закалки с 1100–1160ОС в воде или на воздухе. Для достижения высокой жаропрочности аустенитные стали с карбидным и интерметаллидным упрочнением подвергают закалке с 1050–1200ОС в воде, масле или на воздухе для растворения карбидных и интерметаллидных фаз в твердом растворе – аустените – и получения после охлаждения однородного высоколегированного твердого раствора и старению при 600–850ОС для выделения дисперсных фаз из твердого раствора, упрочняющих сталь. Высокая жаропрочность сталей с карбидным упрочнением достигается введением в хромоникелевый или хромоникельмарганцовистый аустенит 0,3 – 0,5% С и карбидообразующих элементов Mo, W, V, Nb и др. К этим сталям относятся, например, стали 45Х14Н14В2М и 40Х12Н8Г8МФБ, а также сталь 40Х15Н7Г7Ф2МС, в которой никель частично заменен марганцем. Длительная прочность σ600100 этой стали составляет 400 МПа. К сталям с интерметаллидным упрочнением относится большая группа сложнолегированных сталей, содержащих, кроме хрома и никеля, титан, алюминий, вольфрам, молибден и бром. Содержание углерода в этих сталях должно быть небольшое, так как он связывает молибден и вольфрам в карбиды, что понижает жаропрочность аустенита. Бор упрочняет границы зерен аустенита в результате образования боридов. К этой группе относится сталь 10Х11Н2Т3Р, применяемая в виде листов для изготовления сварных деталей, работающих при температурах 550 – 750 ОС, а также сталь 10Х11Н23Т3МР. Длительная прочность σ600100 и σ700100 этих сталей составляет 550 – 600 и 300 – 400 МПа соответственно. сталь сплав жаропрочный деталь 5. Жаропрочные стали на никелевой основе (ГОСТ 56321–32) Жаропрочные сплавы на основе никеля называют нимониками. Эти сплавы предназначены для изготовления деталей с длительным сроком службы при 650–850ОС. Для получения высокой окалиностойкости никель легируют хромом (20%), а для повышения жаропрочности – титаном (1,0–2,8%) и алюминием (0,55–5,5%). В этом случае при старении закаленного сплава в основном γ-твердом растворе образуется интерметаллидная γ-фаза [типа Ni3 (Ti, Al)], а также карбиды TiC и нитриды TiN, увеличивающие прочность при высоких температурах. Дальнейший рост жаропрочности достигается легированием сплавов 2,0–11% Мо и 2,0–11% W, повышающими температуру рекристаллизации и затрудняющими процесс диффузии в твердом растворе, определяющий коагуляцию избыточных фаз и рекристаллизацию. Добавление к сложнолегированным сплавам 4–16% Со еще больше увеличивает жаропрочность и технологическую пластичность сплавов. Для упрочнения границ зерен γ-твердого раствора сплав легируют бором и цирконием. Они устраняют вредное влияние примесей, связывая их в тугоплавкие соединения. Примеси серы, сурьмы, свинца и олова понижают жаропрочность сплавов и затрудняют их обработку давлением. Наиболее широко используют никелевый сплав ХН77ТЮР. После закалки с 1080–1120ОС он имеет структуру, состоящую из пересыщенного γ-раствора с г.ц.к. решеткой, и поэтому небольшую прочность и высокую пластичность, допускающую глубокую штамповку, гибку и полирование. Сплав удовлетворительно сваривается. После закалки и старения при 700ОС сплав получает высокую жаропрочность. Широко применяют сплав ХН70ВМТЮ, обладающий хорошей жаропрочностью и достаточной пластичностью при 700 – 800 ОС. Предел длительной прочности сплава σ800100 = 200÷250 МПа. 6. Тугоплавкие металлы и сплавы на их основе Тугоплавкими называют металлы, температура плавления которых выше, чем у железа. Наибольшее значение в технике имеют тугоплавкие металлы Nb, Mo, Cr, Ta и W с температурой плавления соответственно 2468, 2625, 1275, 2996 и 3410 ОС. Интерес к тугоплавким металлам и сплавам на их основе возрос в связи со строительством ракет, космических кораблей, атомных реакторов и развитием энергетических установок, отдельные детали и узлы которых работают при температурах до 1500–2000 ОС. Молибден, вольфрам и хром обладают высокой жаропрочностью, однако они склонны к хрупкому разрушению из-за высокой температуры порога хладноломкости, которую особенно сильно повышают примеси внедрения С, N, Н и О. после деформации ниже температуры рекристаллизации (1100–1300ОС) порог хладноломкости молибдена и вольфрама понижается. Ниобий и тантал в отличие от вольфрама и молибдена – металлы с хорошей пластичностью и сворачиваемостью. Молибден и вольфрам в Чистов виде используют в радио- и электронной промышленности (нити накаливания, листовые аноды, сетки, пружины катодов, нагреватели и т.д.) вследствие малого поперечного сечения захвата нейтронов и отсутствия взаимодействия с расплавленными щелочными металлами ниобий применяют для изготовления теплообменников атомных реакторов. Жаропрочность чистых металлов сравнительно невелика. Более высокой жаропрочностью обладают сплавы на основе тугоплавких металлов. Повышение жаропрочности достигается в результате образования легированного твердого раствора или твердого раствора, который добавочно упрочняется мелкодисперсными выделениями типа карбидов ZrC, (Ti, Zr) C и др., оксидов (ZrO2) и т.д. Все тугоплавкие металлы обладают низкой жаропрочностью. Поэтому при температурах 600 – 800 ОС их нужно защищать от окисления. Для молибдена и вольфрама лучшими считаются термодиффузионные силицидные покрытия (MoSi2, WSi2). Поверхностные покрытия чаще применяют для деталей, работающих малый срок службы, или одноразового действия. Под жаростойкостью (окалиностойкостью) понимают способность металла сопротивляться окислению при высоких температурах. Для повышения окалиностойкости стали легируют элементами, которые существенно изменяют состав и строение окалины. Железо при температурах выше 570 ОС образует три окисла: FeO (вюстит), Fe3O4 (магнетит), Fe2O3 (гематит), которые слабо защищают поверхность металла от воздействия кислорода. При введении в железо хрома, алюминия или кремния, обладающих большим сродством к кислороду, на поверхности образуются плотные окислы Cr2O3, Al2O3, SiO2, затрудняющие процесс дальнейшего окисления. Чем выше содержание хрома, алюминия или кремния в стали, тем выше окалиностойкость стали и тем выше может быть рабочая температура. Количество хрома, необходимое для обеспечения окалиностойкости при разных температурах, можно определить по рис. 2. следует подчеркнуть, что окалиностойкость не зависит от структуры стали, а зависит только от химического состава. Рис. 2. Влияние хрома на окалиностойкость: 1 – ферритные стали; 2 – аустенитные стали Сравнительная оценка жаростойкости чистых металлов по скорости окисления на воздухе в интервале допустимых рабочих температур приведена в табл. 1. Таблица 1. Жаростойкость чистых металлов
Очень плохая жаростойкость магния при температурах выше 450 ОС связана с образованием рыхлого оксида MgO, у которого коэффициент объема φ = 0,79. В интервале 500 – 600 ОС скорость окисления магния лежит в пределах 10-1 – 101 г / (м2 * ч). Металлы Nb, Ta, Mo, W имеют плотные оксиды, но их защитные свойства ухудшаются при нагреве выше 550 ОС. Это объясняется тем, что у них φ > 2,5, поэтому возникают большие напряжения, вызывающие растрескивание оксидов. Кроме того, оксид молибдена при нагреве испаряется. Оксиды титана и циркония, образующиеся при нагреве, теряют кислород вследствие его большой растворимости в металле и не защищают от дальнейшего окисления. Это явление называют деградацией оксида. При высоких температурах и длительных выдержках оксид становится даже рыхлым. Для тугоплавких металлов скорости окисления на воздухе в интервале 700 – 800 ОС лежат в пределах 101–103 г / (м2 * ч). Металлы Cu, Fe, Ni, Co (см. табл. 1) в интервале 500–600ОС окисляются на воздухе со скоростью от 10-3 до 103 г / (м2*ч), а в интервале 700–800ОС – от 101 до 1 г / (м2*ч). относительно высокие скорости окисления у этих металлов связывают с большой дефектностью образующихся при нагреве оксидов. В процессе окисления железа и стали на поверхности растут несколько оксидов, у которых химический состав, кристаллическая структура и защитные свойства различны. Температурная зависимость скорости окисления железа на воздухе отражает изменения состава и структуры образующихся на поверхности оксидов (рис. 3.). До 560ОС окисление идет медленнее, так как на поверхности образуются оксиды Fe3O4 и Fe2O3 с хорошими защитными свойствами. При дальнейшем нагреве единственным защитным оксидом становится FeO с худшими защитными свойствами, чем у Fe3O4 и Fe2O3. именно по этой причине предельно допустимая рабочая температура нагрева на воздухе для чистого железа составляет 560 ОС. Благодаря легированию эту температуру удается повысить до 1000–1200 ОС. Рис. 3. Влияние температуры на скорость окисления Δm железа на воздухе Металлы Al, Zn, Sn, Hb, Cr, Mn, Be (см. таб. 1.) обладают хорошей жаростойкостью. Скорость окисления хрома на воздухе в интервале 400 – 600 ОС менее 10-6 г / (м2 * ч), а в интервале 700–800ОС составляет 10-4 – 10-3 г/(м2*ч). Жаростойкость промышленных медных сплавов – латуней и бронз – выше жаростойкости чистой меди. Легирующие элементы в медных сплавах (см. табл. 1.) имеют большее химическое сродство к кислороду, чем медь, и при достаточном их количестве образуют при нагреве собственные оксиды, обладающие лучшими защитными свойствами, чем Cu2O. Сплавы меди с бериллием, алюминием, марганцем отличаются высокой жаростойкостью; несколько уступают им сплавы меди с цинком, оловом и кремнием. Титановые и циркониевые сплавы поглощают кислород, поэтому защитные оксиды на поверхности не образуются и жаростойкость титана при легировании не улучшается. Повысить жаростойкость удается лишь применением жаростойких покрытий. Жаростойкость железа и сталей повышают легированием хромом, алюминием и кремнием. Наибольшее распространение при объемном и поверхностном легировании железа и сталей получил хром, содержание которого доходит до 30%. С увеличением количества хрома в стали, а также ростом температуры и выдержки содержание хрома в оксиде возрастает. Легированные оксиды железа заменяются оксидами хрома, что ведет к повышению жаростойкости. Жаростойкими являются высоколегированные хромистые стали ферритного и мартенситного класса, хромоникелевые и хромомарганцевые стали аустенитного класса. Чем больше хрома содержит сталь, тем выше максимальная температура ее применения и больше срок эксплуатации изделий. Жаростойкость определяется главным образов химическим составом стали (т.е. содержанием хрома) и сравнительно мало зависит от ее структуры. Дополнительное легирование жаростойких сталей кремнием (до 2–3%) и алюминием (до 1–2% в сталях и до 4–5% в сплавах с высоким электрическим сопротивлением) повышает температуру эксплуатации. Низкоуглеродистая сталь при большом содержании хрома приобретает однофазную ферритную структуру. В процессе длительной работы при высоких температурах кристаллы феррита растут, что сопровождается понижением ударной вязкости. Для предотвращения охрупчивания сталь дополнительно легируют карбидообразующими элементами (например, Ti). Карбиды затрудняют рост зерна феррита. Химический состав и свойства некоторых жаростойких сталей приведены в табл. 2. Таблица 2. Химический состав (ГОСТ 5632–72) и химические свойства жаростойких сталей
Следует отметить, что стали 08Х17Т и 15Х25Т ферритного класса (в структуре преобладает феррит) не жаропрочны, поэтому их используют в изделиях, которые не испытывают больших нагрузок, особенно ударных. Сплавы 20Х23Н18 и 20Х25Н20С2 аустенитного класса не только жаростойки, но жаропрочны. Области применения жаростойких сталей и сплавов указаны в табл. 3. Таблица 3. Жаростойкие стали и сплавы, применяемые в электропечах
В жаростойких сталях содержание алюминия и кремния ограничено, так как эти элементы охрупчивают сталь и ухудшают технологические свойства при обработке давлением. Этот недостаток можно исключить, если использовать их при поверхностном легировании. Жаростойкие стали Х13Ю4 и Х23Ю5Т, легированные хромом и алюминием, так же как и сплав Х20Н80, используют как материалы с повышенным электрическим сопротивлением. Низкая жаростойкость тугоплавких металлов – Mo, W, Ta, Nb создает большие затруднения при использовании их в качестве жаропрочных материалов. Применение вакуума и защитных сред при технологической обработке и эксплуатации тугоплавких металлов вызывает в некоторых случаях большие технические трудности. Объемное легирование этих металлов не приводит к повышению жаростойкости, хотя для повышения жаропрочности оно может быть эффективным. Высокой жаростойкости можно добиться, используя жаростойкие тугоплавкие покрытия. |