1.4. Применение закона Био–Савара–Лапласа. Магнитное поле кругового тока Рассмотрим проводник в форме окружности радиуса R, по которому протекает ток I (рис. 11). Разобьем круговой ток на элементы тока , каждый из которых создает в центре кругового тока (точка О) магнитное поле . По закону Био–Савара–Лапласа (1.1), с учетом, что , магнитная индукция, создаваемая элементом тока в точке О, определяется формулой
.
П о принципу суперпозиции . В точке О все от разных элементов кругового тока имеют одинаковое направление. Следовательно,
.
Таким образом, для индукции магнитного поля в центре кругового тока получаем
. (1.7)
Рассмотрим магнитное поле, создаваемое круговым током в других точках на оси z (рис. 12).
Л z юбая пара равных по величине элементов тока ( ), расположенная симметрично относительно оси z, создает в точках на оси магнитное поле: ( ). Вектор в соответствии с законом Био–Савара–Лапласа направлен перпендикулярно плоскости, содержащей вектора и . Вектор направлен перпендикулярно плоскости, содержащей вектора и . Вектора и образуют ромб, диагональ которого представляет вектор , направленный вдоль оси Оz.
Как следует из рис. 12,
.
Учитывая, что , по закону Био–Савара–Лапласа
.
Так как , , получаем
.
По принципу суперпозиции результирующий вектор также направлен вдоль оси z, поэтому
.
Окончательное выражение для индукции в точках на оси кругового тока имеет вид
.
|