1.6. Теорема о циркуляции вектора магнитной индукции (закон полного тока) Теорема о циркуляции вектора магнитной индукции в вакууме: циркуляция вектора магнитной индукции по произвольному замкнутому контуру равна алгебраической сумме токов, охватываемых этим контуром, умноженной на . Иначе говоря,
,
г де – элементарное перемещение вдоль замкнутого контура l.
Докажем теорему для случая, когда ток I течет по прямому бесконечно длинному проводнику, а замкнутый контур l расположен в плоскости, перпендикулярной току (рис. 14).
Циркуляция вектора магнитной индукции может быть записана в виде
,
где – индукция магнитного поля прямого тока; – проекция вектора элементарного перемещения на направление вектора .
И з рис. 15 видно, что с хорошей степенью точности. Таким образом,
(1.10)
Если изменить направление тока на рис. 14 на противоположное, то изменится направление вектора на противоположное в каждой точке пространства. Противоположной по знаку станет циркуляция вектора для выбранного направления обхода контура. При этом в равенстве (1.10) ток следует считать отрицательным и подставлять его значение в формулу (1.10) со знаком минус. Таким образом, ток следует считать положительным, если направление обхода контура связано с направлением тока правилом правого винта. В противном случае ток надо считать отрицательным.
Е сли контур l не охватывает ток (рис. 16), то
.
В случае контура произвольной формы (рис. 17) элементарное перемещение разложим на две составляющие, перпендикулярную и параллельную вектору магнитной индукции:
Так как доказательство теоремы для случая контура произвольной формы сводится к рассмотренному выше случаю.
М ожно показать, что теорема о циркуляции (или закон полного тока) справедлива в общем случае для системы токов произвольной формы и произвольного замкнутого контура:
, (1.11)
где – токи, охватываемые контуром, причем берется с плюсом, если направление и направление обхода контура связаны правилом правого винта, и с минусом в противном случае.
Если контур находится в проводящей среде, в которой существует упорядоченное движение зарядов, теорему (1.11) удобно представить в виде
,
где S – любая поверхность, ограниченная контуром l; – проекция плотности тока на нормаль к элементу поверхности .
|