Био и Савар провели в 1820 г. исследование магнитных полей токов различной формы. Они установили, что магнитная индукция во всех случаях пропорциональна силе тока, создающего магнитное поле. Лаплас проанализировал экспериментальные данные, полученные Био и Саваром, и нашел, что магнитное поле тока I любой конфигурации может быть вычислено как векторная сумма (суперпозиция) полей, создаваемых отдельными элементарными участками тока.
Д лина каждого участка тока настолько мала, что его можно считать прямым отрезком, расстояние от которого до точки наблюдения много больше . Удобно ввести понятие элемента тока где направление вектора совпадает с направлением тока I, а его модуль равен (рис. 6).
Для индукции магнитного поля , создаваемого элементом тока в точке, находящейся на расстоянии r от него (рис. 6), Лаплас вывел формулу, справедливую для вакуума:
. (1.1)
Формула закона Био–Савара–Лапласа (1.1) написана в системе СИ, в которой постоянная называется магнитной постоянной.
Уже отмечалось, что в магнетизме, как и в электричестве, имеет место принцип суперпозиции полей, т. е. индукция магнитного поля, создаваемого системой токов, в данной точке пространства равна векторной сумме индукций магнитных полей, создаваемых в этой точке каждым из токов в отдельности:
(1.2)
Н а рис. 7 приведен пример построения вектора магнитной индукции в поле двух параллельных и противоположных по направлению токов и :
1.3. Применение закона Био–Савара–Лапласа. Магнитное поле прямого тока Рассмотрим отрезок прямого тока. Элемент тока создает магнитное поле, индукция которого в точке А (рис. 8) по закону Био–Савара–Лапласа находится по формуле:
, (1.3)
где – угол между направлением тока и вектором , характеризующим положение точки А относительно
На рис. 9 представлен фрагмент рис. 8. Опустив перпендикуляр из точки С на сторону ОА, получим два прямоугольных треугольника. Из треугольника ODC следует, что СD= , а из треугольника CDA следует, что CD= .
Учитывая, что и бесконечно малые величины, получим
. (1.4)
После подстановки (1.4) в (1.3) получим:
.
Из рис. 8 следует, что , где b – расстояние от прямого тока до рассматриваемой точки А. Следовательно,
.
По принципу суперпозиции . В точке А все от различных элементов отрезка прямого тока имеют одинаковое направление. Величина магнитной индукции в точке А равна алгебраической сумме от всех элементов прямого тока:
I .
Т аким образом, для индукции магнитного поля отрезка прямого тока конечной длины (рис. 10) получаем формулу
. (1.5)
В случае бесконечно длинного прямого проводника с током , . Следовательно, Отсюда следует, что индукция магнитного поля бесконечно длинного прямого проводника с током находится по формуле
. (1.6)
|