Главная страница

Магнетизм


Скачать 2.73 Mb.
НазваниеМагнетизм
Дата23.11.2022
Размер2.73 Mb.
Формат файлаdoc
Имя файлаphysics_bookshelf_magnetics_andreev_chernykh.doc
ТипКонспект
#807013
страница2 из 17
1   2   3   4   5   6   7   8   9   ...   17

1.2. Закон Био–Савара–Лапласа.
Принцип суперпозиции в магнетизме


Био и Савар провели в 1820 г. исследование магнитных полей токов различной формы. Они установили, что магнитная индукция во всех случаях пропорциональна силе тока, создающего магнитное поле. Лаплас проанализировал экспериментальные данные, полученные Био и Саваром, и нашел, что магнитное поле тока I любой конфигурации может быть вычислено как векторная сумма (суперпозиция) полей, создаваемых отдельными элементарными участками тока.

Д лина каждого участка тока настолько мала, что его можно считать прямым отрезком, расстояние от которого до точки наблюдения много больше . Удобно ввести понятие элемента тока где направление вектора совпадает с направлением тока I, а его модуль равен (рис. 6).

Для индукции магнитного поля , создаваемого элементом тока в точке, находящейся на расстоянии r от него (рис. 6), Лаплас вывел формулу, справедливую для вакуума:

. (1.1)

Формула закона Био–Савара–Лапласа (1.1) написана в системе СИ, в которой постоянная называется магнитной постоянной.

Уже отмечалось, что в магнетизме, как и в электричестве, имеет место принцип суперпозиции полей, т. е. индукция магнитного поля, создаваемого системой токов, в данной точке пространства равна векторной сумме индукций магнитных полей, создаваемых в этой точке каждым из токов в отдельности:

(1.2)

Н а рис. 7 приведен пример построения вектора магнитной индукции в поле двух параллельных и противоположных по направлению токов и :

1.3. Применение закона Био–Савара–Лапласа.
Магнитное поле прямого тока


Рассмотрим отрезок прямого тока. Элемент тока создает магнитное поле, индукция которого в точке А (рис. 8) по закону Био–Савара–Лапласа находится по формуле:

, (1.3)

где – угол между направлением тока и вектором , характеризующим положение точки А относительно

На рис. 9 представлен фрагмент рис. 8. Опустив перпендикуляр из точки С на сторону ОА, получим два прямоугольных треугольника. Из треугольника ODC следует, что СD= , а из треугольника CDA следует, что CD= .

Учитывая, что и бесконечно малые величины, получим

. (1.4)

После подстановки (1.4) в (1.3) получим:

.

Из рис. 8 следует, что , где b – расстояние от прямого тока до рассматриваемой точки А. Следовательно,

.

По принципу суперпозиции . В точке А все от различных элементов отрезка прямого тока имеют одинаковое направление. Величина магнитной индукции в точке А равна алгебраической сумме от всех элементов прямого тока:


I
.

Т аким образом, для индукции магнитного поля отрезка прямого тока конечной длины (рис. 10) получаем формулу

. (1.5)

В случае бесконечно длинного прямого проводника с током , . Следовательно, Отсюда следует, что индукция магнитного поля бесконечно длинного прямого проводника с током находится по формуле

. (1.6)
1   2   3   4   5   6   7   8   9   ...   17


написать администратору сайта