Главная страница
Навигация по странице:

  • Понятие вариации

  • 6 8 12 15 17 19 20 Оцененный пробег автомобиля (тыс. миль) Рис. 4.5. Вариация и кривые распределения В качестве меры вариации

  • «доверительный интервал»

  • Значение нормированного отклонения оценки (z) от среднего значения в зависимости от доверительной вероятности (α) полученного результата

  • 4.12. Сбор данных 4.12.1. Организация и проведение сбора данных

  • Маркетинг и менеджмент в России и за рубежом


    Скачать 4.67 Mb.
    НазваниеМаркетинг и менеджмент в России и за рубежом
    Дата16.05.2022
    Размер4.67 Mb.
    Формат файлаpdf
    Имя файлаGolubkov_Issledovaniya.pdf
    ТипКнига
    #532542
    страница23 из 43
    1   ...   19   20   21   22   23   24   25   26   ...   43
    4.11.3. Определение объема выборки
    В реальности решение об объеме выборки является компромиссом между теоретическими предположениями о точности результатов обследования и возможностями их практической реализации, прежде всего имеются в виду затраты на проведение опроса.
    Следует отметить, что объем выборки никак не влияет на репрезентативность полученных результатов. Предположим, например, что в целях изучения степени использования в России персональных компьютеров в научной работе проводился опрос на основе принципа удобства на одном из московских перекрестков. И хотя было опрошено 5000 респондентов, полученные результаты не являются репрезентативными даже для Москвы. Это обусловлено тем, что был использован невероятностный метод формирования выборки, который в данном случае применять было нельзя.
    На практике используется несколько подходов к определению объема выборки. Прежде всего опишем наиболее простые.
    Произвольный подход основан на применении «правила большого пальца». Например, бездоказательно принимается, что для получения точных результатов выборка должна составлять
    5% от совокупности. Данный подход является простым и легким в исполнении, однако не представляется возможным установить точность полученных результатов. При достаточно большой совокупности он к тому же может быть и весьма дорогим.
    Объем выборки может быть установлен исходя их неких заранее оговоренных условий.
    Скажем, заказчик маркетингового исследования знает, что при изучении общественного мнения выборка обычно составляет 1000—1200 человек, поэтому он рекомендует исследователю придер- живаться данной цифры. В случае, если на каком-то рынке проводятся ежегодные исследования, то в каждом году используется выборка одного и того же объема. В отличие от первого подхода здесь при определении объема выборки используется известная логика, которая, однако, является весьма уязвимой. Например, при проведении определенных исследований может потребоваться точность меньше, чем при изучении общественного мнения, да и объем совокупности может быть во много раз меньше, нежели при изучении общественного мнения. Таким образом, данный подход не принимает в расчет текущие обстоятельства и может быть достаточно дорогим.
    В ряде случаев в качестве главного аргумента при определении объема выборки используется стоимость проведения обследования. Так, в бюджете маркетинговых исследований предусматриваются затраты на проведение определенных обследований, которые нельзя превышать. Очевидно, что ценность получаемой информации не принимается в расчет. Однако в ряде случаев и малая выборка может дать достаточно точные результаты.
    Представляется разумным учитывать затраты не абсолютным образом, а по отношению к полезности информации, полученной в результате проведенных обследований. Заказчик и исследователь должны рассмотреть различные объемы выборки и методы сбора данных, затраты, учесть другие факторы.
    Объем выборки может определяться на основе статистического анализа. Этот подход основан на определении минимального объема выборки исходя из определенных требований к надежности и достоверности получаемых результатов. Он также используется при анализе полу- ченных результатов для отдельных подгрупп, формируемых в составе выборки по полу, возрасту, уровню образования и т.п. Требования к надежности и точности результатов для отдельных подгрупп диктуют определенные требования к объему выборки в целом.
    Наиболее теоретически обоснованный и корректный подход к определению объема выборки основан на расчете доверительных интервалов. Рассмотрение данного подхода начнем с краткой характеристики ряда базовых понятий математической статистики (см. подробнее, на- пример, в [10]).
    Понятие вариации характеризует величину несхожести (схожести) ответов респондентов
    166
    на определенный вопрос. В более строгом плане вариацией значений какого-либо признака в совокупности называется различие его значений у разных единиц данной совокупности в один и тот же период или момент времени. Результаты ответов на вопросы опроса обычно представляются в форме кривой распределения. При высокой схожести ответов говорят о малой вариации (узкая кривая распределения) и при низкой схожести ответов — о высокой вариации
    (широкая кривая распределения). На рис. 4.5 приводятся кривые распределения результатов ответа на вопрос: «Сколько миль за год проходит ваш автомобиль?» для низкой и высокой вариации ответов.
    6 8 12 15 17 19 20
    Оцененный пробег автомобиля (тыс. миль)
    Рис. 4.5. Вариация и кривые распределения
    В качестве меры вариации обычно принимается среднее квадратическое отклонение,
    которое характеризует среднее расстояние от средней оценки ответов каждого респондента на определенный вопрос. Можно сравнить среднее квадратическое отклонения для двух выборок и определить, для какой из них вариация является меньшей.
    Поскольку все маркетинговые решения принимаются в условиях неопределенности, то это обстоятельство целесообразно учесть при определении объема выборки. Так как определение исследуемых величин для совокупности в целом осуществляется на основе выборочной статистики, то следует установить диапазон (доверительный интервал), в который, как ожидается, попадут оценки для совокупности в целом, и ошибку их определения.
    Понятие «доверительный интервал» — это диапазон, крайним точкам которого соответствует определенный процент определенных ответов на какой-то вопрос. Данное понятие тесно связано с понятием «среднее квадратическое отклонение изучаемого признака в генеральной совокупности»: чем оно больше, тем шире должен быть доверительный интервал, чтобы включить в свой состав, например, 95% ответов.
    Из свойств нормальной кривой распределения вытекает, что конечные точки доверительного интервала, равного, скажем, 95%, определяются как произведение 1,96, называемого нормированным отклонением, на среднее квадратическое отклонение. Числа 1,96 и
    2,58 .(для 99%-ного доверительного интервала) обозначаются как Z. Имеются таблицы «Значение интеграла вероятностей», которые дают возможность определить величины Z для различных доверительных интервалов. Доверительный интервал, равный или 95%, или 99%, является стандартным при проведении маркетинговых исследований.
    Например, проведено исследование числа визитов автовладельцев в сервисные мастерские за год. Доверительный интервал для среднего числа визитов был рассчитан равным 5—7 визитам при 99%-ном уровне доверительности. Это означает, что если появится возможность провести независимо 100 раз выборочные исследования, то для 99 средних значений числа визитов попадут в диапазон от 5 до 7 визитов — другими словами, 99% автовладельцев попадут в доверительный интервал.
    Предположим, было проведено исследование для пятидесяти независимых выборок.
    Средние оценки для этих выборок образовали нормальную кривую распределения, которая в данном случае называется выборочным распределением. Средняя оценка для совокупности в целом равна средней оценке кривой распределения. Понятие «выборочное распределение» также
    167
    рассматривается в качестве одного из базовых понятий теоретической концепции, лежащей в основе определения объема выборки.
    Очевидно, что ни одна компания не проводит маркетинговых исследований, формируя 50 независимых выборок. Обычно используется только одна выборка. И математическая статистика дает возможность получить некую информацию о выборочном распределении, владея только данными о вариации единственной выборки.
    Индикатором степени отличия оценки, истинной для совокупности в целом, от оценки, которая ожидается для типичной выборки, является средняя квадратическая ошибка (см. ниже).
    Например, исследуется мнение потребителей о новом продукте и заказчик данного исследования указал, что его устроит точность полученных результатов, равная ±5%. Предположим, что 30% членов выборки высказалось за новый продукт. Это означает, что диапазон возможных оценок для всей совокупности составляет 25—35%. Причем чем больше объем выборки, тем меньше ошибка.
    Высокое значение вариации обусловливает высокое значение ошибки и наоборот.
    Теперь, после знакомства с базовыми понятиями, определим объем выборки на основе расчета доверительного интервала. Исходной информацией, необходимой для реализации данного подхода, является: 1. Величина вариации, которой, как считается, обладает совокупность. 2. Же- лаемая точность. 3. Уровень доверительности, которому должны удовлетворять результаты проводимого обследования.
    Когда на заданный вопрос существует только два варианта ответа, выраженные в процентах (используется процентная мера), объем выборки определяется по следующей формуле:
    Таблица 4.15
    Значение нормированного отклонения оценки (z) от среднего значения в зависимости
    от доверительной вероятности (α) полученного результата
    Например, фирмой, выпускающей покрышки, проводится опрос автолюбителей. Целью обследования является определение процента автолюбителей, использующих радиальные покрышки, поэтому на вопрос: «Используете ли вы радиальные покрышки?» — возможно только два ответа: «Да» или «Нет» (шкала наименований). Если предположить, что совокупность автолюбителей обладает низким показателем вариации, то это означает, что почти каждый опрошенный использует радиальные покрышки. В этом случае может быть сформирована выборка достаточно малых размеров. В формуле (4.1) произведение pq выражает вариацию, свойственную совокупности.
    Предположим, что 90% единиц совокупности используют радиальные покрышки. Это означает, что рq = 900. Если принять, что показатель вариации выше (р = 70%), то рq = 2100.
    Наибольшая вариация достигается в случае, когда половина совокупности (50%) используют радиальные покрышки, а другая (50%) — не использует. В этом случае произведение рq достигает наибольшего значения, равного 2500.
    При проведении обследования следует указать точность полученных оценок. Скажем, было
    168
    установлено, что 44% респондентов используют радиальные покрышки. В этом случае результаты измерения желательно представить в виде: «Процент автолюбителей, использующих радиальные покрышки, составляет 44% плюс-минус ...%». Величину допустимой ошибки заранее совместно определяют заказчик исследования и исследователь.
    Что касается уровня доверительности, то при проведении маркетинговых исследований, как отмечалось выше, обычно рассматриваются только два его значения: 95% или 99%. Первому значению соответствует значение z = 1,96, второму — z = 2,58. Если выбирается уровень довери- тельности, равный 99%, то это говорит о том, что мы уверены на 99% (другими словами, доверительная вероятность равна 0,99) в том, что процент членов совокупности, попавших в диапазон ± е%, равен проценту членов выборки, попавших в тот же диапазон ошибки.
    Принимая вариацию, равную 50%, точность, равную ± 10%, при 95%-ном уровне доверительности, рассчитаем размер выборки:
    При уровне доверительности, равном 99%, и е = ±3% n = 1067.
    При определении показателя вариации для определенной совокупности прежде всего целесообразно провести предварительный качественный анализ исследуемой совокупности, в первую очередь установить схожесть единиц совокупности в демографическом, социальном и других отношениях, представляющих интерес для исследователя. Возможно проведение пилотного исследования, использование результатов подобных исследований, проведенных в прошлом. При использовании процентной меры изменчивости принимается в расчет то обстоятельство, что максимальная изменчивость достигается для р = 50%, что является наихудшим случаем. К тому же этот показатель радикальным образом не влияет на объем выборки. Учитывается также мнение заказчика исследования об объеме выборки.
    Возможно определение объема выборки на основе использования средних значений, а не процентных величин, как это делалось выше. Предположим, что выбран уровень доверительности, равный 95% (z=1,96), среднее квадратическое отклонение (s) рассчитано равным 100 и желаемая точность (погрешность) составляет ±10. Определение объема выборки (n):
    На практике, если выборка формируется заново и схожие опросы не проводились, то s не известно. В этом случае целесообразно задавать погрешность е в долях от среднеквадратического отклонения. Расчетная формула преобразуется и приобретает следующий вид:
    Выше шел разговор о совокупностях очень больших размеров, характерных для рынков потребительских товаров. Однако в ряде случаев совокупности на являются столь большими — например, на рынках отдельных видов продукции производственно-технического назначения.
    Обычно, если выборка составляет менее пяти процентов от совокупности, то совокупность считается большой и расчеты проводятся по вышеприведенным правилам.
    Если же объем выборки превышает пять процентов от совокупности, то последняя считается малой и в вышеприведенные формулы вводится поправочный коэффициент. Объем выборки в данном случае определяется следующим образом:
    где n' — объем выборки для малой совокупности;
    n — объем выборки (или для процентных мер, или для средних), рассчитанный по приведенным выше формулам;
    N — объем генеральной совокупности.
    Например, изучается мнение членов совокупности, состоящей из 1000 компаний,
    169
    относительно изменения местной налоговой политики органами власти определенного региона.
    Вследствие отсутствия информации о вариации принимается наихудший случай 50:50. Решено использовать уровень доверительности, равный 95%. Заказчик исследования заявил, что его устроит точность результатов ±5%. Тогда, используя формулу для процентной меры, получим
    Очевидно, что использование выборки меньших размеров приведет к экономии времени и средств.
    Данный подход к определению объема выборки с известными оговорками может быть использован и при определении численности панели и экспертной группы (см. соответствующие разделы данной книги).
    Приведенные формулы расчета объема выборки основаны на предположении, что все правила формирования выборки были соблюдены и единственной ошибкой выборки является ошибка, обусловленная ее объемом. Однако следует помнить, что объем выборки определяет точ- ность полученных результатов, но не их представительность. Последняя определяется методом формирования выборки. Все формулы для расчета объема выборки предполагают, что репрезентативность гарантируется использованием корректных вероятностных процедур формирования выборки.
    Помимо четкого планирования репрезентативности выборки, нельзя распространять полученные результаты за ее границы. Так, результаты исследования мнения массового потребителя города Москвы о товарах определенной фирмы нельзя распространять на всю
    Россию. Далее, можно быть поставленным в тупик разными результатами обследования степени лояльности потенциальных покупателей к определенной марке пылесоса (в одном исследовании была названа цифра 10%, в другом случае — 25%). Дело в том, что в первом случае цифра была получена от общего числа опрошенных, а во втором случае — только от числа тех покупателей, которые твердо решили приобрести пылесос. Поэтому для вдумчивого маркетолога очень важными являются те пояснения, которые сопровождают социологические данные (как минимум, формулировки вопросов и описание выборки).
    4.12. Сбор данных
    4.12.1. Организация и проведение сбора данных
    Существует по крайней три альтернативных подхода к сбору данных: осуществлять это самим, осуществлять путем создания специальной группы или путем привлечения коммерческих компаний, специализирующихся на сборе данных.
    В первом случае сотрудники маркетинговой службы организации своими силами осуществляют сбор данных, скажем, путем интервьюирования. Очевидно, что такая организация должна обладать достаточно развернутым штатом сотрудников. Однако и в этом случае весьма проблематично проведение сбора данных в широком, например национальном, масштабе.
    Специальная группа обычно комплектуется за счет специалистов не очень высокой квалификации, например, студентов для проведения телефонного или персонального интервьюирования. В этом случае с интервьюерами необходимо провести несколько тренировочных занятий. Необходимы контроль за качеством собираемой информации (не запол- няются ли анкеты самим интервьюером?), мотивация труда интервьюеров.
    За последние годы как у нас в стране, так и за рубежом начинающие дело небольшие компании и такие гиганты, как «Дженерал Моторз», все чаще прибегают к услугам специализированных компаний, осуществляющих маркетинговые исследования на коммерческой основе. К их числу относятся и компании, занимающиеся только сбором маркетинговой информации.
    170

    К числу достоинств привлечения к проведению маркетинговых исследований таких компаний относится следующее:
    1. Большой опыт проведения подобных исследований. Например, в определенном универсаме на протяжении многих лет компания проводит опрос покупателей или она регулярно осуществляет опрос общественного мнения. Такие компании обычно имеют высококвалифицированный персонал. Сбор данных обычно осуществляется обученными интервьюерами, которых привлекают для работы компания.
    2. Наличие классов, оборудованных современными техническими и электронными средствами, для тренировки интервьюеров практически в реальных условиях.
    3. Быстрота проведения исследований даже в случае удаления маркетинговой компании от респондентов на тысячи километров.
    4. Контроль качества как стандартная процедура процесса сбора данных. Существуют различные приемы проверки добросовестности интервьюеров и качества собранной ими информации. Например, путем установления вторичных контактов с ранее привлеченными респондентами.
    Однако стоимость услуг маркетинговых компаний в три—пять раз превышает стоимость других двух подходов к сбору данных. Поэтому ее необходимо сопоставлять с качеством и надежностью получаемой информации.
    Кроме того, поскольку заказчик исследования сам не участвует в его проведении, особенно в случае, когда такой заказ для него имеет место впервые, то для него может показаться странным, что можно провести сбор данных в разных регионах, не покидая офиса компании. Представители компании должны развеять такие сомнения.
    Большое значение имеет правильное проведение сбора данных. При личном интервьюировании необходимо представиться и сказать несколько слов о проводимом исследовании. Например: «Один из российских производителей холодильников хочет лучше узнать покупателей своей продукции. На основе результатов этого исследования будут изменены некоторые характеристики продукции и условия обслуживания для лучшего удовлетворения желаний покупателей». При использовании анкет данная информации должна содержаться в ее вводной части.
    Следует подчеркивать конфиденциальность ответов. Скажите, сколько времени займет опрос. Не начинайте с вопросов о доходах и других вопросов личного характера.
    Помогайте респонденту разобраться в сложных вопросах. Например, при ранжировании характеристик холодильника объясните методику определения степени важности отдельных характеристик. Предложите дать разъяснения, если возникнут вопросы.
    1   ...   19   20   21   22   23   24   25   26   ...   43


    написать администратору сайта