Билеты. Мдк 01. 01 Основы слесарно сборочных и электромонтажных работ
Скачать 3.2 Mb.
|
Методики пусконаладочных работ (способы проведения испытаний), существующие в наше время, различны, но все проходят в три этапа.1. Подготовительный – сначала заказчик и исполнитель согласовывают программу проведения, утрясают детали, договариваются о цене. 2. Вторая ступень – накладка панелей управления, автоматики и элементов защиты. Возможно это только после окончания ремонта и всей отделки, когда будут функционировать системы освещения, а электрооборудование будет заземлено. 3. Завершающий – специалисты проводят комплексное испытание оборудования. Во время этого этапа должно быть настроено взаимодействие установленных электроприборов с выдачей технических отчетов. Только когда все аппараты достигнут предусмотренных характеристик при любом режиме эксплуатации, электрики могут считать свое дело завершенным. 7.Назовите основную нормативную и технологическую документации, регламентирующую выполнение пусконаладочных работ. Проведение ПНР регламентируется разделом СНиП 3.05.06-85 Электротехнические устройства (часть 4 пусконаладочные работы). ПУЭ (правилами устройства электроустановок), чертежами и схемами. Программы (а также нормы и методы) типовых и контрольных испытаний установлены ГОСТами на соответствующее оборудование. Объем и нормы приемосдаточных испытаний определены «Правилами устройства электроустановок». Эксплуатационные испытания проводятся в соответствии с «Нормами испытаний электрооборудования» и «Правилами технической эксплуатации электроустановок потребителей». 8.Назовите и охарактеризуйте виды испытаний электрооборудования. Различают следующие виды испытаний: 1) типовые; 2) контрольные; 3) приемосдаточные; 4) эксплуатационные; 5) специальные. Типовые испытания нового оборудования, отличающегося от существующего конструкцией, материалами или технологическим процессом, принятым при его изготовлении, выполняются заводом-изготовителем с целью проверки соответствия всем требованиям, предъявляемым к оборудованию данного типа стандартами или техническими условиями. Контрольным испытаниям подвергается каждое изделие (машина, аппарат, прибор и т. д.) при выпуске с завода-изготовителя для проверки соответствия выпускаемого изделия основным техническим требованиям. Контрольные испытания выполняются по сокращенной (по сравнению с типовыми испытаниями) программе. Приемосдаточным испытаниям подвергается по окончании монтажа все вновь вводимое в эксплуатацию оборудование для оценки пригодности его к эксплуатации. Оборудование, находящееся в эксплуатации, в том числе вышедшее из ремонта, подвергается эксплуатационным испытаниям, целью которых является проверка его исправности. Эксплуатационными являются испытания' при капитальных и текущих ремонтах и профилактические испытания, не связанные с выводом оборудования в ремонт. Специальные испытания проводятся для исследовательских и других целей по специальным программам. 9.Назовите и охарактеризуйте методы измерения сопротивления переменному току. Электрическое сопротивление - основная электрическая характеристика проводника, величина, характеризующая противодействие электрической цепи или ее участка электрическому току. Также сопротивлением могут называть деталь (её чаще называют резистором) оказывающую электрическое сопротивление току. Электрическое сопротивление обусловлено преобразованием электрической энергии в другие виды энергии и измеряется в Ом. Измерение сопротивления при переменном токе производят методами:
Измеритель иммитанса или измеритель RLC — радиоизмерительный прибор, предназначенный для определения параметров полного сопротивления или полной проводимости электрической цепи. RLC в названии «измеритель RLC» составлено из широко распространённых схемных названий элементов, параметры которых может измерять данный прибор: R— Сопротивление, С — Ёмкость, L —Индуктивность. Измерительная линияЭто устройство для исследования распределения электрического поля вдоль СВЧ-линии передачи. Измерительная линия представляет собой отрезок коаксиальной линии или волновода с перемещающимся вдоль него индикатором, отмечающим узлы (пучности) электрического поля. С помощью измерительной линии исследуется распределение напряженности электромагнитного поля, из которого определяются коэффициент стоячей волны как отношение амплитуд волны в пучности и узле и фаза коэффициента отражения по смещению узла. Зная эти параметры, по круговой диаграмме полных сопротивлений можно найти полное сопротивление. Измерения производятся с использованием измерительного генератора в качестве источника сигнала. Для отсчета показаний используются, как правило, гальванометр или измеритель отношений напряжений. Измерительные линии применяются на частотах от сотен мегагерц до сотен гигагерц. «Линия состоит из трех основных узлов: отрезка передающей линии с продольной узкой щелью, зондовой головки и каретки с механизмом для перемещения зондовой головки вдоль линии. Зондовая головка представляет собой резонатор, возбуждаемый зондом — тонкой проволокой, погруженной через щель во внутреннюю полость волновода. Глубину погружения зонда в линии регулируют специальным винтом, расположенным сверху зондовой головки. Внутри резонатора помещен полупроводниковый детектор, связанный с индикаторным прибором. При перемещении зонда вдоль линии, внутри которой имеется электромагнитное поле, в зонде наводится электродвижущая сила, пропорциональная напряженности поля в сечении расположения зонда. Эта э. д. с. возбуждает резонатор, создавая в нем электромагнитные колебания. Для уменьшения искажающего действия зонда на электромагнитное поле в линии и повышения чувствительности линии объемный резонатор зондовой головки настраивают в резонанс с частотой электромагнитных колебаний»[7]. Для измерения полного сопротивления цепи также используется устройство, называемое измерителем полных сопротивлений. Измерители полного сопротивления имеют меньшую чувствительность, чем измерительные линии, однако они имеют существенно меньшие размеры, особенно в нижней части диапазона частот. Коэффициент стоячей волны , как и в измерительных линиях, определяется из отношения показаний низкочастотного индикатора при экстремальных значениях сигнала. Импеданс исследуемого объекта находят по круговой диаграмме полных сопротивлений исходя из значений коэффициента стоячей волны и фазы коэффициента отражения. Измерение ультрамалых сопротивленийВ профессиональной и радиолюбительской практике приходится встречаться с необходимостью измерения ультрамалого сопротивления. К числу задач, требующих измерения сопротивлений вплоть до 1 мОм с заданной точностью, относятся, например, изготовление шунтов (в том числе и для измерительных приборов), измерение переходного сопротивления контактов реле, переключателей и т. п. Аналогичная задача возникает и при необходимости отбора мощных полевых транзисторов. В широко распространенных методах измерения последовательно с измеряемым сопротивлением Rx неизбежно включено паразитное сопротивление Rn, образованное соединительными проводами, переходным сопротивлением входных клемм или гнезд, контактных переключателей и т. п. Ввиду того что сопротивление Rn включено последовательно с Rx, омметр измеряет их суммарное значение. Конечно, для больших значений сопротивления эта ошибка невелика и ее не учитывают. Иначе обстоит дело при измерении малых значений. Несложно заметить, что для значений RX) соизмеримых с сопротивлением Rn, измерение в принципе еще возможно, хотя о точности говорить уже не приходится. Это действительно так для обычных, применяемых в аналоговых и цифровых омметрах, методов измерения сопротивления Тем не менее эта задача давно успешно решена в более сложных приборах для измерения малых значений сопротивления методом амперметра и милливольтметра. Через измеряемое сопротивление Rx пропускают ток, регулируемый балластным резистором R6 и контролируемый амперметром РА1 Падение напряжения на Rx измеряют милливольтметром PV1. Обратите внимание - вольтметр подключен непосредственно к Rx, поэтому влияние Rn полностью исключается. При этом, правда, появляется паразитное сопротивление Rnv в цепи вольтметра, образуемое контактным сопротивлением в точках подключения вольтметра (на рисунке показаны стрелками) и сопротивлением соединительных проводов вольтметра. Однако влияние Rnv пренебрежимо мало и его можно не учитывать, поскольку условие Rv > Rnv (где Rv - входное сопротивление вольтметра) выполняется практически всегда. Действительно, минимальное значение входного сопротивления мультиметра у самых простых моделей составляет 1 МОм, а значение Rnv заведомо меньше 1 кОм. Значение Rx измеряемого сопротивления вычисляют по известной простейшей формуле Rx= U/I. 10.Назовите и охарактеризуйте методы измерения сопротивления постоянному току Основными методами измерения сопротивления постоянному току являются:
Метод амперметра-вольтметра основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем с последующим вычислением сопротивления (с учетом погрешностей) по следующим схемам измерение по схеме (а) обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме (6) - при измерении малых сопротивлений. Мостовой метод. Применяют две схемы измерения - схема одинарного моста (схема а) и схема двойного моста (схема б). Для измерения сопротивлений в диапазоне от 1 Ом до 1 МОм применяют одинарные мосты постоянного тока. 11.Назовите временные характеристики устройств защиты и автоматики. Как осуществляется проверка временных характеристик? Устройства релейной защиты и автоматики (РЗА) – это устройства, выполняющие функцию автоматического отключения электрических цепей для защиты их от перегрузок и токов короткого замыкания. Например, тепловые и электромагнитные реле, автоматические выключатели. Временные характеристики РЗА:
При наладке и проверке релейной защиты и автоматики, испытаниях электрических машин, аппаратов измеряют различные промежутки времени, связанные с временем срабатывания отдельных реле и устройств защиты и автоматики в целом. Продолжительность этих промежутков может быть от миллисекунд до десятков секунд или нескольких минут. Точность измерений временных промежутков также различна. Большое время срабатывания (около 20 с и более) может измеряться обычным пружинным секундомером, который запускается вручную одновременно с пуском реле и останавливается при его срабатывании. Ошибка в измерении этим способом при таком большом времени срабатывания (около 0,5—1 с) существенного значения не имеет. Для более точного измерения продолжительности действия различных устройств применяют электрические секундомеры. 12.Как производят измерения силы тока при выполнении пусконаладочных работ? Назовите используемые приборы, требования к ним (система прибора, особенности подключения, расширение пределов). Измерения силы тока возможно производить двумя методами: прямым (при помощи амперметра) и косвенным (при помощи расчетов через другие непосредственно измеренные величины). Особенности амперметра:
Шунт выбирают по коэффициенту шунтирования и величине сопротивления. Предположим, необходимо измерить ток 25А амперметром с максимальным значением на шкале 1А. Определим сопротивление шунта, если сопротивление амперметра 0,075Ом. сначала необходимо определить коэффициент шунтирования После этого находите сопротивление шунта
При косвенном определении силы тока можно, например, измерить мощность тока P, падение напряжения на участке цепи U, а силу тока определить по формуле I=P/U 13.Как производят измерения напряжения при выполнении пусконаладочных работ? Назовите используемые приборы, требования к ним (система прибора, особенности подключения, расширение пределов). Измерения напряжения возможно производить двумя методами: прямым (при помощи вольтметра) и косвенным (при помощи расчетов через другие непосредственно измеренные величины). Особенности вольтметра:
Для измерения напряжения в цепях постоянного тока применяют магнитоэлектрические вольтметры, а в цепях переменного тока - электромагнитные и электродинамические. 14.Как производят измерения мощности при выполнении пусконаладочных работ (прямые и косвенные методы)? Назовите используемые приборы, требования к ним (система прибора, особенности подключения). В цепи постоянного тока мощность может быть измерена методом амперметра и вольтметра, так как Р = I • U. Однако более точно ее можно напрямую измерить электродинамическим ваттметром. Для измерения активной мощности в цепях переменного тока применяют ваттметры электродинамической системы. Их включают так же, как и при измерениях в цепи постоянного тока. 15.Назовите и кратко охарактеризуйте методы неразрушающих испытаний изоляции. Контроль изоляции в эксплуатации, обозначаемый часто термином «профилактика изоляции», служит для выявления дефектов в изоляционных конструкциях и последующей их замены или восстановления на месте. Все методы контроля изоляции можно разделить на разрушающие и неразрушающие. Для выявления возникающих в изоляции дефектов разработаны и применяются следующие методы неразрушающих испытаний изоляции: а) измерение сопротивления изоляции или измерение тока сквозной проводимости; б) измерение угла диэлектрических потерь; в) измерение емкости; г) измерение распределения напряжения; д) измерение частичных разрядов в изоляции; е) просвечивание рентгеновскими лучами или ультразвуком. Среди многих возможных неэлектрических методов контроля (акустических, оптических, химических и др.) в настоящее время получили широкое применение и показали высокую эффективность методы контроля изоляции маслонаполненного оборудования, основанные на анализе проб масла. Наиболее совершенным является контроль по составу и концентрации газов, растворенных в масле. В этом случае из проверяемого трансформатора берут две-три пробы масла. Далее анализ газов из проб масла проводят методом газовой хроматографии: определяют концентрации водорода, метана, этилена, этана, ацетилена, окиси и двуокиси углерода и других. Установлено, что по составу и концентрациям газов, растворенных в масле, можно достаточно достоверно судить о характере дефекта, а по динамике изменения концентраций - о степени опасности этого дефекта. 16.Охарактеризуйте метод испытания изоляции повышенным напряжением Применение этого метода ограничивается возможностями создания транспортабельных источников высокого напряжения требуемой мощности и опасностью неконтролируемого повреждения изоляции высоким испытательным напряжением. В настоящее время профилактические испытания высоким напряжением проводят для изоляции крупных вращающихся машин, кабельных линий, а также для оборудования до 10 кВ. Изоляция статорных обмоток турбо- и гидрогенераторов испытывается ежегодно переменным напряжением 1,5 UНОМ, а при более редком контроле - до 1,7 UНОМ. Допускается применение постоянного испытательного напряжения, значение которого должно быть в 1,6 раза выше испытательного напряжения промышленной частоты. Достоинствами постоянного испытательного напряжения являются существенно меньшая мощность испытательной установки, возможность измерений токов утечки, которые дают полезную информацию о состоянии изоляции, а также значительно меньшая, чем при переменном испытательном напряжении, опасность повреждения изоляции. Изоляция кабельных линий испытывается практически только постоянным высоким напряжением. 17.Назовите наиболее общие дефекты электрооборудования и общую методику их выявления Электрооборудование в каждый момент времени может находиться в одном из двух состояний — исправном или неисправном. Исправное электрооборудование соответствует всем требованиям, установленным документацией. Неисправным электрооборудование считается в том случае, если оно не соответствует хотя бы одному из этих требований, т. е. когда в нем имеется один или несколько дефектов. Каждое несоответствие электрооборудования установленным требованиям называют дефектом. Чаще всего при наладочных работах встречаются такие общие дефекты оборудования: корпуса — повреждения их в процессе транспортировки, хранения и монтажа, неплотности в стыках, дефекты уплотнений, сварных и болтовых соединений и т. п.; обмотки отклонение номинальных данных от проекта, механические повреждения, увлажнение изоляции, нарушение междувитковой изоляции, соединений в обмотках, токопроводах и выводах, несоответствие маркировки и группы соединения требованиям ГОСТа, заводским паспортам и другим сопроводительным документам, превышение допустимых отклонений сопротивления обмоток постоянному току и т. д.; устройства переключения обмоток силовых трансформаторов — механические повреждения приводов, отсутствие фиксации привода в соответствующем положении, неправильное соединение отпаек, отсутствие контакта в переключателе; магнитопроводы — коррозия и механические повреждения, приводящие к замыканию отдельных листов стали между собой, засорение вентиляционных каналов (статоров и роторов машин), нарушение зазоров или неплотное прилегание отдельных частей друг к другу (контакторы, пускатели, реле, электромагниты), нарушение изоляции стяжных болтов и их слабая затяжка (у трансформаторов) ; коммутационные аппараты — неудовлетворительная регулировка тяг, привода и контактной системы, размыкающих и замыкающих контактов, отсутствие или неудовлетворительное состояние искрогасительных камер; силовые кабели — видимые дефекты концевых заделок, повреждение изоляции и оболочек, обрывы жил, дефекты соединительных муфт; фарфоровая изоляция — повреждение наружной поверхности (сколы, трещины, повреждения сваркой), внутренние дефекты, течи масла из-под уплотнений (вводы трансформаторов, конденсаторов); заземляющие устройства — дефекты соединения заземляющих проводников с корпусами оборудования, несоответствие сопротивлению заземляющего устройства требованиям ПУЭ, ПТЭ, инструкций и др. Признаки, позволяющие установить факт нарушения работоспособности электрооборудования и тем самым отнести его фактическое состояние к одному из известных, называются критериями отказа или дефекта и задаются документацией в виде перечня параметров с указанием допустимых пределов их изменения — допусков. Уход параметра за пределы допуска является критерием, по которому узнают о неработоспособности электрооборудования. Конкретные изменения, происходящие в электрооборудовании (например, обрыв провода, неправильное соединение элементов между собой, замыкание токоведущих частей и т. п.), называют характером отказа или дефекта и подразделяют на электрические и неэлектрические. После установления на основе критериев и характера отказа факта существования в электрооборудовании дефекта переходят к его поиску. Поиск дефектов в любом изделии может быть представлен совокупностью тех или иных проверок, в том числе разнообразных измерений, а также расчетов, выполняемых в определенной последовательности. Для удобства и краткости будем в дальнейшем все проверки называть технологическими переходами. Технологические переходы подразделяют на косвенные и непосредственные. Косвенные — позволяют найти дефект или ошибку без измерения каких-либо параметров по признакам, косвенно связанным с исправным или неисправным (работоспособным или неработоспособным) состоянием электрооборудования, а непосредственные помогают обнаружить дефект после измерения параметров или определения характеристик. Косвенными переходами являются визуальный контроль, замена (исключение) блока, введение ошибки; непосредственными — проверка электрических цепей, измерение, промежуточные измерения, сравнение. Для успешного поиска дефектов необходимо уметь выполнять технологические периоды в правильно выбранной последовательности, т. е. знать методы поиска дефектов. В зависимости от последовательности выполнения технологических переходов и правил перехода от одного к другому различают два метода поиска дефектов — комбинационный и последовательный. Комбинационный метод Комбинационный метод поиска дефектов заключается в том, что после установления факта существования дефекта выполняют в произвольном порядке технологические переходы, цель которых—определение параметров (характеристик) электрооборудования (называемого далее объект контроля) или его элементов. Этот метод характеризуется тем, что результаты выполнения предыдущих технологических переходов не влияют на выполнение последующих. Затем, проанализировав результаты выполнения всех переходов, определяют причину дефекта. При последовательном методе поиска дефектов результат выполнения каждого технологического перехода анализируется и по его результатам либо считают, что причина дефекта найдена, либо принимают решение о необходимости выполнения следующего технологического перехода. Порядок выполнения переходов при этом методе поиска дефектов может быть как фиксированным, установленным заранее (его называют также формальным), так и условным, зависящим от результатов выполнения предыдущих переходов. 18.Охарактеризуйте содержание проверки состояния механической части электрооборудования. При транспортировке и хранении в электрооборудовании также могут возникнуть дефекты (ослабление креплений и нарушение регулировки, изменение механических характеристик, образование коррозии, нарушение проводимости контактов и снижение характеристик изоляции). Поэтому перед наладочным персоналом встает задача — увязать проектные решения с фактическим состоянием оборудования объекта и проверить возможность включения каждой единицы и всего комплекса оборудования в работу. Начиная работу на объекте, наладчик па основе проектного решения обязан провести тщательный контроль состояния и анализ соответствия проекту каждой единицы механического (имеющего электропривод) и электротехнического оборудования, проанализировать взаимное соответствие электрооборудования (пусковой аппаратуры — электродвигателю, защитной аппаратуры — нагрузке линии, номинальных данных катушек пускателей, контакторов и электроприводов — номиналам питающей сети и цепей управления, количества размыкающих и замыкающих контактов — схеме управления), особенно в случае отклонения установленного оборудования от проектного Таким образом, наладчик начинает работу с электрооборудованием с внешнего осмотра установки и всех ее элементов, внутреннего осмотра и проверки механической части аппаратуры, паспортизации установки (записи паспортных данных и назначения каждой единицы оборудования по элементной схеме) Цель осмотра и паспортизации — выявление возможных дефектов оборудования как по техническому состоянию и пригодности к эксплуатации, так и по соответствию его технических характеристик проекту и другому оборудованию. Для контроля состояния механической части электрооборудования необходим его осмотр, в процессе которого выявляют общее состояние оборудования, все наружные дефекты, проверяют раствор и провал контактов аппаратов, взаимодействие отдельных механических частей оборудования (одновременность замыкания контактов и правильность действия блок-контактов автоматического выключателя, пускателей, контакторов и реле; работу механизма свободного расцепления у автоматических выключателей, выключателей нагрузки и масляных выключателей с ручным приводом и т. д.), т. е. работоспособность оборудования без подачи на него напряжения (опробование от руки). Механическое состояние электрических машин проверяют внешним осмотром, проворачиванием вала вручную (малых машин), затем после соответствующих испытаний опробованием на холостом ходу или на холостом ходу с механизмом (если невозможно разъединить приводную машину с механизмом, например вентилятор на оси электродвигателя) и под нагрузкой с проверкой нагрева, вибрации и тока, потребляемого машиной, работы системы охлаждения. Механическое состояние измерительных трансформаторов, реакторов, комплектных распределительных устройств, различных шкафов, щитов и т. д. определяется только внешним осмотром и поведением уже после включения оборудования в работу. 19.Охарактеризуйте содержание проверки состояния токоведущих частей и контактных соединений электрооборудования. Состояние токоведущих частей и их контактных соединений кроме визуального контроля проверяют измерением сопротивления постоянному току обмоток, отдельных контактов, токоведущих участков в местах их соединений (сборных шин и шинопроводов). При наличии короткозамкнутых витков измеренное сопротивление постоянному току, как правило, меньше, а при обрыве, неудовлетворительном соединении или нарушении контактных соединений оно превышает паспортные значения или нормируемые величины. Отклонение одного из измерений от заводских данных является признаком того, что дефект находится в соединении обмотки с переключателем или в пайке обмоток. При плохой регулировке контактов выключателей значительно увеличиваются переходное сопротивление постоянному току силовых контактов по сравнению с нормативными значениями и расхождение сопротивлений по фазам. Состояние заземляющих проводок и качество их контактных соединений определяют внешним осмотром и по результатам специальных измерений, выполняемых с помощью измерителей заземления. Диапазон сопротивлений, который приходится измерять, очень велик — от 10+5 (переходные сопротивления контактов) до 105 Ом (сопротивления обмоток реле, резисторов). Следовательно, методы и приборный парк, необходимые при выполнении этих работ, разнообразны. Результаты измерений сопротивления постоянному току не являются единственным критерием состояния токоведущих частей. Качество ответственных контактных соединений может проверяться специальными испытаниями. Проверка схем соединений включает первичные (силовые) и вторичные цепи (как внутренние, так и внешние) и требует особого внимания и строгой последовательности операций с условной отметкой проверенных участков в принципиальной схеме электроустановки. Эта проверка состоит из внешнего осмотра, прозвонки цепей, определения полярностей выводов обмоток, измерения сопротивления изоляции и ее испытания, контроля работы схемы от временного источника напряжения. При внешнем осмотре проверяют соответствие монтажа проекту, состояние контактных соединений, соблюдение расстояний между токоведущими и между токоведущими и заземленными частями, маркировку и расцветку шин, кабелей и их жил, проводов, аппаратов и оборудования, соблюдение необходимого чередования фаз, правильности технологического монтажа и т. д. Дальнейшую проверку осуществляют прозвонкой, которую выполняют с помощью различных вспомогательных устройств. 20.Охарактеризуйте содержание проверки автоматических выключателей. При проверке и испытаниях автоматических выключателей выполняют следующее:
Работоспособность и надежность включения и отключения выключателей электроприводом при номинальном, пониженном и повышенном напряжениях проверяют до контроля действия максимальных расцепителей. На практике при такой проверке работоспособности привода необходима его регулировка, во время которой нарушается действие электромагнитных максимально-токовых расцепителей (у автоматов серий ABM, А-3700). Поэтому настройку максимально-токовой защиты выполняют на заключительной стадии наладки. Проверку работоспособности и надежности включения и отключения выполняют подачей на схему привода выключателя напряжения, равного номинальному. При этом проверяют и в случае необходимости регулируют механизмы включения и отключения выключателя (количество операций включения и отключения при каждом значении напряжения составляет не менее пяти с интервалами между ними не менее 5 с), а также контролируют работоспособность и надежность независимого и минимального расцепителей при номинальном, пониженном и повышенном напряжениях оперативного тока в сети. Проверку тепловых элементов при наладочных работах осуществляют нагрузочным током, равным трехкратному номинальному току расцепителя. Время срабатывания сравнивают с заводскими (или типовыми) характеристиками с учетом, что они даны для случая одновременной нагрузки испытательным током всех полюсов выключателя. Если фактическое время срабатывания превысит на 50 % данные завода- изготовителя, необходимо, прежде чем браковать выключатель, проверить начальный ток его срабатывания. При нагрузке одного полюса выключателя начальный ток срабатывания увеличивается на 25—30 % по сравнению с таким же током при нагрузке одновременно всех полюсов. Время срабатывания теплового расцепите- ля должно соответствовать заводской характеристике. При этом большинство выключателей имеет ограниченное время испытания под током (не более 120—150 с). При проверке электромагнитных расцепителей без тепловых элементов подают на каждый полюс испытательный ток, значение которого устанавливают на 15—30 % ниже тока уставки. При этом выключатель не должен отключаться. Затем испытательный ток поднимают до тока срабатывания, значение которого не должно превышать значения тока уставки более чем на 15—30 %. При проверке электромагнитных элементов комбинированных расцепителей нагрузочный ток от испытательного устройства подают на каждый полюс выключателя. Быстро увеличивая ток до значения на 15—30 % ниже тока уставки, убеждаются, что расцепитель не срабатывает. Затем быстро повышают ток до тока срабатывания, фиксируя его значение. Оно не должно отличаться от заводских данных. Проверяя электромагнитные элементы комбинированных расцепителей, следует помнить, что между подачами испытательного тока на полюс должен быть интервал, достаточный для остывания теплового элемента. 21.Охарактеризуйте содержание проверки трансформаторов до 10 кВ. Объемы и нормы приемосдаточных испытаний силовых трансформаторов устанавливаются ПУЭ В программу приемосдаточных испытаний трансформаторов общего назначения входят следующие:
Перед испытаниями трансформаторов следует ознакомиться с технической документацией (проектной и завода-изготовителя), а также произвести их осмотр с целью установления комплектности смонтированного оборудования, его соответствия проекту, отсутствия видимых повреждений конструктивных элементов, изоляции, выводов. Испытания проводят при температуре окружающего воздуха 10—40 °С. |