|
Биофиз.РЕМИЗОВ. Механика. Акустика глава 4 Некоторые вопросы биомеханики
§ 18.4. Усиление биоэлектрических сигналов
Прямое, непосредственное измерение биоэлектрического сигнала, или сигнала, созданного на выходе генераторного датчика, является трудновыполнимой задачей, так как эти сигналы обычно
весьма малы. Именно поэтому в структурной схеме (см. рис. 17.1) вторым элементом показан усилитель электрических сигналов.
Ради определенности проиллюстрируем особенности усиления медико-биологических электрических сигналов на примере биоэлектрических сигналов, т. е. тех сигналов, которые снимаются . электродами с биологического объекта.
Специфика усилителей биопотенциалов определяется следующими основными особенностями этой разновидности электрических колебаний: 1) выходное сопротивление биологической системы совместно с сопротивлением электродов обычно достаточно высоко; 2) биопотенциалы — медленно изменяющиеся сигналы; 3) биопотенциалы — слабые сигналы.
Рассмотрим подробнее эти вопросы. В § 17.2 отмечалась роль переходного сопротивления электрод — кожа на передачу биоэлектрического сигнала последующим элементам схемы. Оказывается, этим вопросом проблема сопротивлений не ограничивается: при усилении сигнала следует учитывать соотношения сопротивлений Rtи RBX[см. (17.1)]. Необходимо, как принято говорить, согласование сопротивления входной цепи усилителя и выходного сопротивления биологической системы.
Вопрос согласования полных сопротивлений (импедансов) достаточно сложный. Проиллюстрируем его лишь некоторыми особенностями взаимодействующих элементов электрической схемы.
Выразив из (17.1) силу тока / = ξбп/(Ri + RBX) и подставив в формулу для входного напряжения UBXусилителя, получим
Из (18.5) следуют некоторые предельные случаи: 1) UBX→ 0 при RBK→ 0, т. е. на входе усилителя не будет напряжения, если его входное сопротивление равно нулю; 2) UBX→ ξ6п при RBX→∞, т. е. максимально возможное напряжение на усилителе будет при бесконечно большом его входном сопротивлении. Во втором случае тока во входной цепи нет; следовательно, не будет передаваться и мощность от источника сигнала.
В реальной ситуации на входе усилителя окажется часть напряжения, генерируемого биологической системой и зависящего от отношения RJRвх[см. (18.5)].
Эти примеры обращают внимание на необходимость согласования сопротивлений. В электрофизиологии считают, что RBXдолжно в 10—20 раз превышать наибольшее возможное значение Rv
Малая частота биологических электрических сигналов приводит к тому, что в цепях усилителя невозможно использовать конденсаторы, так как при малых частотах значительно возрастает емкостное сопротивление [см. (14.33)]. Приходится использовать специальные усилители постоянного тока.
Малость биопотенциалов побуждает использовать усилители с достаточно большим коэффициентом усиления, поэтому даже небольшие помехи, попадающие на вход усилителя, могут исказить полезный биоэлектрический сигнал и вызвать ложную информацию. Помехами можно считать любые токи или напряжения на выходе усилителя при отсутствии на его входе полезного сигнала.
От одних помех можно избавиться или уменьшить их влияние, усложнив и удорожив конструкцию усилителя. От других избавиться в принципе невозможно, и поэтому приходится использовать каскад с небольшим коэффициентом усиления.
Так, например, переменный ток городской сети может наводить ЭДС вследствие электромагнитной индукции в рядом расположенных усилительных цепях и биологических объектах. Экранирование усилителя и проводников в его цепи, а также исследуемых систем, удаление этих элементов от проводников с переменным током позволяет устранить или уменьшить и эти помехи.
Если детали усилителя (электроды ламп, пластины конденсаторов и др.) будут колебаться, то это приведет к периодическому изменению параметров схемы и, как следствие, к возникновению случайных электромагнитных колебаний — микрофонный эффект. Укрепляя детали схемы и усиливая амортизацию, можно уменьшить или ликвидировать помехи и этого вида.
Большая группа помех получила название шумов (электронных шумов). Шумы слышны, например, в приемнике в виде шипения, треска и шороха. Особенно это заметно при большом усилении.
Термин «шумы» произошел от слухового восприятия электрических хаотических сигналов (в области частот 20 Гц — 20 кГц) при подключении репродуктора. Однако сейчас это понятие используется безотносительно к их частотному интервалу и тем более безотносительно к тому, воспроизводятся ли шумы звуковыми волнами или нет.
Шумы имеют разную физическую природу, в значительной степени они обусловлены флуктуациями токов, т. е. случайными отклонениями их от средней величины, что вызвано беспорядочными движениями электронов. Избавиться от шума достаточно сложно стараются изготовить специальные малошумящие транзисторы и лампы для использования в первых каскадах усилителей.
Искажения усиленного сигнала могут возникнуть и вследствие нестабильности источников питания, поэтому в некоторых случаях следует специально предусматривать стабилизацию напряжения.
§ 18.5. Различные виды электронных генераторов. Генератор импульсных колебаний на неоновой лампе
В медицине электронные генераторы находят три основных применения:
— — в физиотерапевтической электронной аппаратуре;
— — в электронных стимуляторах;
— — в отдельных диагностических приборах, например в реографе.
Основанием для классификации генераторов электрических колебаний могут быть разные признаки: разновидность технического устройства, область частот, уровень мощности и т. п. Для практического использования генераторов в медицине весьма существенна форма генерируемых электрических колебаний. В этом отношении они подразделяются на генераторы гармонических (синусоидальных) и импульсных (релаксационных) колебаний.
В качестве некоторого примера рассмотрим работу генератора импульсных (релаксационных) колебаний на неоновой лампе. Одна из возможных схем такого генератора показана на рис. 18.6. Здесь Л — неоновая лампа. Такие лампы «зажигаются» при некотором строго определенном значении напряжения U3, а гаснут при меньшем напряжении Ur. Процесс начинается с зарядки конденсатора С. На графике зависимости выходного напряжения от времени (рис. 18.7), этот этап показан отрезком ОА, отвечающим уравнению (14.17). В точке А напряжение на конденсаторе достигает значения U3, достаточного для ионизации газа в неоновой лампе, лампа загорается и конденсатор разряжается через нее [см. (14.15)]. В точке В напряжение на лампе станет равн ым UT, лампа гаснет и ее сопротивление значительно возрастает. Конденсатор опять подзаряжается, и процесс повторяется.
Как видно из (14.17), скорость возрастания напряжения в такой схеме можно изменять, изменяя параметры Rи С. Так, увеличение сопротивления приведет к увеличению времени τ,
участок ОА станет более пологим. Изменение напряжения на участке АВ происходит при разряде неоновой лампы и зависит, следовательно, от ее характеристик. Подбирая параметры схемы, можно реальный график (см. рис. 18.7) приблизить к идеальному, называемому пилообразным напряжением (рис. 18.8). График зависимости этого напряжения от времени напоминает профиль пилы. В течение времени Тгнапряжение линейно возрастает от U1до U2, затем за время Т2оно линейно уменьшается до минимального значения. Если требуется более точное приближение к линейному изменению напряжения со временем, то применяют более сложные схемы. Пилообразное напряжение используется в генераторе развертки электронного осциллографа (см. § 18.8).
§ 18.6. Электронные стимуляторы.Низкочастотная физиотерапевтическая электронная аппаратура
Будем, ради краткости, называть физиотерапевтическую электронную аппаратуру низкой и звуковой частоты низкочастотной. Электронную аппаратуру всех других частот — обобщающим понятием высокочастотная.
Медицинские аппараты — генераторы гармонических и импульсных низкочастотных электромагнитных колебаний — объединяют две большие группы устройств, которые трудно четко разграничить: электронные стимуляторы (электростимуляторы) и аппараты физиотерапии. При небольших частотах наиболее существенно специфическое, а не тепловое, действие тока. Поэтому лечение током имеет характер стимулирования какого-либо эффекта раздражением токами. Это обстоятельство, вероятно, и влечет смешение понятий «лечебный аппарат» и «электростимулятор».
Хотя электрическое раздражение мышцы было обнаружено еще в XVIII в., широкое использование электростимуляторов началось лишь в последние десятилетия. В настоящее время имеется много разных электростимуляторов. Но и сейчас важной медицинской и физиологической проблемой остается точное задание выходных параметров электрического сигнала разработчикам электростимуляторов: форма импульса, его длительность, частота импульсного тока и скважность следования импульсов (см. гл. 14 и 15).
Электростимуляторы могут быть подразделены на стационарные, носимые и имплантируемые (вживляемые). Для полностью имплантируемых электростимуляторов, например кардиостимуляторов, достаточно серьезной проблемой являются источники питания, которые должны длительно и экономно функционировать. Эта проблема решается как созданием соответствующих источников, гак и разработкой экономичных генераторов. Так, например, желательно иметь генераторы, которые практически не потребляли бы энергию в паузе между импульсами.
В качестве примера стационарного стимулятора широкого назначения можно указать универсальный электроимпульсатор (рис. 18.9). Он представляет собой генератор импульсного тока прямоугольной и экспоненциальной формы. Параметры импульсов и их частота могут регулироваться в широких пределах, так, например, длительность прямоугольных импульсов способна изменяться дискретно от 0,01 до 300 мс. Аппарат позволяет измерять амплитуду импульса тока в цепи пациента. На экране электронно-лучевой трубки (левая сторона лицевой панели) можно наблюдать форму импульсов на выходе аппарата.
П римером своеобразного стимулятора являются дефибрилляторы — аппараты, представляющие собой генераторы мощных высоковольтных электрических импульсов, предназначаемые цля лечения тяжелых нарушений ритма сердца. Дефибриллятор включает накопитель энергии (конденсатор), устройство заряда конденсатора и разрядную цепь. На рис. 18.10 показан внешний вид импульсного дефибриллятора.
Носимым и частично имплантируемым кардиостимулятором является имплантируемый радиочастотный электрокардиостимулятор (рис. 18.11). Имплантируемая его часть (приемник) показана в центре рисунка, ее масса 22 г, толщина 8,5 мм. Приемник воспринимает радиосигналы от внешнего передатчика (на рисунке слева). Эти сигналы воспринимаются внутри тела больного имплантируемой частью и в виде импульсов через электроды подаются на сердце. В правой части рисунка показан блок питания, который, как и передатчик, носится больным снаружи.
К особой разновидности электростимуляторов можно отнести такие, которые способны в закодированной форме передавать информацию, обычно воспринимаемую органами чувств. Подобным стимулятором является кохлеарный протез, преобразующий звуковую информацию в электрический сигнал, т. е., по существу, заменяющий улитку внутреннего уха (см. § 6.5). Носимый кохлеарный протез показан на рис. 6.12.
К техническим устройствам электростимуляции относятся также электроды для подведения электрического сигнала к биологической системе. Во многих случаях электростимулирование осуществляется пластинчатыми электродами, которые накладываются на тело человека подобно электродам для электрокардиографии (см. § 17.2). Для вживляемых электродов проблемы более серьезные, в том числе и проблема выбора материала, устойчивого к коррозии при прохождении тока в условиях агрессивной биологической среды.
П римером физиотерапевтического аппарата для электротерапии синусоидальными модулированными токами является «Амплипульс-4» (рис. 18.12, а). В нем частота несущих синусоидальных колебаний равна 5 кГц, частота модулирующих синусоидальных колебаний может плавно регулироваться в пределах 10—150 Гц. Некоторые возможные формы токов, созданные этим генератором, показаны на рис. 18.12, б; соотношение между частотами несущих и модулирующих колебаний на рисунке не выдержано.
§ 18.7. Высокочастотная физиотерапевтическая электронная аппаратура. Аппараты электрохирургии
Большая группа медицинских аппаратов — генераторов электромагнитных колебаний и волн — работает в диапазоне ультразвуковых (надтональных), высоких, ультравысоких и сверхвысоких частот и называется обобщающим термином высокочастотная электронная аппаратура.
Проблема электродов в данном случае решается по-разному. Для высокочастотных токов (см. рис. 15.5) используются стеклянные электроды, воздействие переменным магнитным полем (индуктотермия) оказывается через спирали или плоские свернутые кабели, по которым проходит переменный ток, создавая переменное магнитное поле. При УВЧ-терапии прогреваемую часть тела помещают между дискообразными металлическими электродами (рис. 18.13), покрытыми слоем изолятора. При воздействии электромагнитными волнами приближают к телу излучатель этих волн.
Для безопасности больного электроды подключаются не к колебательному контуру генератора (КГ), а к контуру пациента (терапевтическому контуру, ТК), который индуктивно связан с основным колебательным контуром генератора (рис. 18.14). Индуктивная связь исключает возможность случайного попадания больного под высокое постоянное напряжение, которое практически имеется в большинстве медицинских высокочастотных генераторов. На рис. 18.14 изображен генератор на триоде, так как ламповые генераторы еще применяются в медицинской аппаратуре в связи с необходимостью получить достаточно большую мощность.
Ф изиотерапевтические аппараты, являющиеся генераторами электромагнитных колебаний, конструируются так, чтобы не мешать радиоприему и телевидению. Это обеспечивается, с одной стороны, специальными помехозащитными устройствами, а с другой стороны, определенным строгим заданием диапазона рабочих частот.
Внешний вид некоторых аппаратов показан на рисунках: аппарат «Искра-1» — высокочастотный генератор, работающий в импульсном режиме и используемый для местной дарсонвализации (рис. 18.15), аппарат ИКВ-4 для индуктотермии, работающий на частоте 13,56 МГц (рис. 18.16), переносной аппарат для УВЧ-терапии — УВЧ-66 (см. рис. 18.13).
К высокочастотной электронной медицинской аппаратуре относят и аппараты электрохирургии (высокочастотной хирургии). Основой этих устройств является генератор электромагнитных колебаний, гармонических или модулированных. Мощность используемых в электрохирургии электромагнитных колебаний может быть от 1 Вт до нескольких сотен ватт.
Особенность генераторов в том, что они должны отдавать мощность в нагрузку (биологическая ткань), которая изменяется взначительных пределах. Длительное время генераторы вообще могут работать без нагрузки, поэтому в аппаратах электрохирургии еще в значительной степени используются вакуумные лампы, которые по сравнению с полупроводниковыми устройствами обладают большей устойчивостью к возможным перегрузкам.
При электрохирургии электромагнитные колебания подаются на электроды, которые рассекают или коагулируют ткань. Различают электроды для монополярной и биполярной электрохирургии.
В первом случае один выход генератора соединен с активным электродом, которым и осуществляют электрохирургическое воздействие, а другой электрод — пассивный — контактирует с телом пациента.
Во втором случае оба выхода генератора соединены с двумя активными электродами, между которыми протекает высокочастотный ток, оказывая хирургическое воздействие. В этом случае оба электрода являются активными, а пассивный электрод не используется.
§ 18.8. Электронный осциллограф
Осциллограф — это измерительное устройство для визуального наблюдения или записи функциональной зависимости двух ветчин, преобразованных в электрический сигнал. Осциллографы (широко используют для наблюдения временной зависимости переменной величины.
Главной частью электронного осциллографа является электронно-лучевая трубка (ЭЛТ), показанная на рис. 18.17. Ее элементы расположены в вакуумированном баллоне Б. Они включают в себя люминесцирующий экран Э, отклоняющую систему О из двух пар отклоняющих пластин и электронную пушку П (выделена штриховой линией), состоящую из подогревного катода, подобного катоду диода, и специальных электродов, которые ускоряют и фокусируют электроны. На пластины вертикального и горизонтального отклонения подается разность потенциалов. В зависимости от ее знака и значения пучок электронов отклоняется в вертикальном или горизонтальном направлении. Сформированный и определенным образом направленный электронный пучок попадает на люминесцирующий экран — переднюю стенку электронно-лучевой трубки, покрытую люминофорами, которые способны светиться под воздействием ударов электронов (катодолюминесценция).
Пучок электронов на экране изобразится светящейся точкой. Плавно изменяя напряжение на отклоняющих пластинах, светящуюся точку можно перемещать по экрану. Люминофоры обладают свойством послесвечения, они светятся в данном месте некоторое время после того, как электронный пучок сместился с данного места. Поэтому перемещение пучка наблюдается на экране в виде линии.
С труктурная схема осциллографа дана на рис. 18.18: Ух и Уу — усилители, БП — блок питания, ГР — генератор развертки, ЭЛТ — электронно-лучевая трубка. Имеется также блок синхронизации. На рис. 18.19 изображена передняя панель осциллографа.
Поданный на клеммы «Вход Y» и «Земля» сигнал усиливается и подается на вертикально отклоняющие пластины. На экране осциллографа такой сигнал изобразится отрезком вертикальной прямой.
Для наблюдения зависимости сигнала от времени следует светящейся точке сообщить одновременно равномерное движение в горизонтальном направлении. Чтобы записать периодический процесс, точка должна за некоторый конечный промежуток времени переместиться слева направо по экрану и в возможно короткий промежуток времени вернуться обратно. Поэтому напряжение, подаваемое на горизонтально отклоняющие пластины, должно иметь пилообразный вид (см., например, рис. 18.8, причем T1 >> Т2). Принцип устройства, служащего для этой цели, — генератора развертки — был рассмотрен в § 18.5.
Для того чтобы периодический процесс отображался на экране неподвижным изображением, необходимо подобрать достаточно точно частоту развертки: на один период времени развертки должно приходиться целое число периодов исследуемого сигнала. Это условие выполняется блоком синхронизации развертки. Ручки «Диапазон частот» и «Частота плавно» позволяют задавать нужную частоту развертки.
Если исследуемый процесс однократный или непериодический, то может быть использован ждущий режим развертки, предусмотренный в некоторых осциллографах. Этот режим развертки действует каждый раз и только тогда, когда возникает регистрируемый процесс.
Вращая ручки «Яркость» и «Фокус», изменяют разность потенциалов между ускоряющими электродами, благодаря чему достигаются различная интенсивность и площадь сечения электронного пучка. При этом происходит изменение яркости и фокусировки светящейся точки. Ручки «Ось У» и «Ось X» служат для смещения всей изображаемой картины в вертикальном или горизонтальном направлении.
Для наблюдения зависимости каких-либо двух величин подают электрические сигналы, отвечающие этим величинам, на клеммы «Вход У» и «Вход X». Генератор развертки при этом не включается. Так, в частности, можно получить фигуры Лиссажу (см. § 5.3) вектор-кардиограмму (см. § 12.5).
С помощью ручки «Усиление» изменяют усиление поданного сигнала. При этом на экране осциллографа изображение растягивается или сжимается по соответствующему направлению.
Для калибровки масштаба времени в некоторых осциллографах предусмотрен генератор меток времени для периодического изменения яркости пятна на экране. Благодаря этому можно определять длительность изображаемого процесса или его отдельных частей.
Изображение, полученное на экране электронного осциллографа, может быть сфотографировано.
РАЗДЕЛ 6
Оптика
Оптика— раздел физики, в котором рассматриваются закономерности излучения, поглощения и распространения света. В физике термин «свет» применяют не только к излучению, воспринимаемому глазом человека, но и к невидимому излучению. Природа света двойственна, дуалистична. Это означает, что свет проявляет себя и как электромагнитная волна, и как поток частиц — фотонов. Дуализм света, в частности, отражается формулой е = hv, так как энергия е фотона является квантовой характеристикой, а частота колебаний v — характеристикой волнового процесса.
В одних оптических явлениях в большей степени проявляются волновые свойства света, а в других — корпускулярные. Двойственная природа присуща также и частицам — электрону, протону и т. д.
Так как свет обладает электромагнитной природой, то оптику целесообразно изучать после электродинамики. Вопросы излучения света граничат с атомной физикой и существенно с ней связаны. Поэтому раздел «Оптика» предшествует атомной физике.
В развитии физики оптические наблюдения, эксперименты и теории сыграли особую роль: прямолинейное распространение света и его отражение от зеркальных поверхностей было известно еще задолго до нашей эры; интерференционный опыт Майкельсона явился экспериментальным основанием теории относительности; гипотеза Планка о дискретности излучения положила начало квантовой физике.
Исследования видимого света и связанные с этим измерения относятся не только к области физики, но и к физиологии. В этом отношении оптика подобна акустике.
Для медиков и биологов эти знания прежде всего важны при исследовании биологических объектов: микроскопия, спектрометрия, рефрактометрия, поляриметрия, колориметрия. Кроме того, врачам следует знать физические основы использования теплового излучения для диагностики заболевания (термография), устройство аппаратуры светолечения и другие вопросы.
Глава 19
Интерференция и дифракция света. Голография
Под интерференцией света понимают такое сложение световых волн, в результате которого образуется устойчивая картина их усиления и ослабления. Для получения интерференции света необходимо выполнение определенных условий. Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Возможность наблюдения дифракции зависит, в частности, от соотношения длины волны и размеров неоднородностей. Различают с некоторой степенью условности дифракцию сферических волн (дифракция Френеля) и дифракцию плоскопараллельных волн (дифракция Фраунгофера). Описание дифракционной картины возможно с учетом интерференции вторичных волн. В главе рассматривается голография как метод, основанный на интерференции и дифракции.
§ 19.1. Когерентные источники света. Условия для наибольшего усиления и ослабления волн
Сложение волн, распространяющихся в среде, определяется сложением в разных точках пространства соответствующих колебаний. Наиболее простой случай сложения электромагнитных волн наблюдается тогда, когда их частоты одинаковы и направления электрических векторов совпадают. В этом случае амплитуду результирующей волны можно найти по формуле (5.30), которую для амплитуды напряженности электрического поля запишем в виде
г де Dj — разность фаз слагаемых волн (колебаний).
В зависимости от типа источников света результат сложения волн может быть принципиально различным.
Сначала рассмотрим сложение волн, идущих от обычных источников света (лампа, пламя, Солнце и т. п.). Каждый такой источник представляет совокупность огромного количества излучающих атомов. Отдельный атом излучает электромагнитную волну приблизительно в течение 108 с, причем излучение есть событие случайное, поэтому и разность фаз Dj в формуле (19.1) принимает случайные значения. При этом среднее по излучениям всех атомов значение cosDj равно нулю. Вместо (19.1) получаем усредненное равенство для тех точек пространства, где складываются две волны, идущие от двух обычных источников света:
(19.2)
Так как интенсивность волны пропорциональна квадрату амплитуды [см. (14.60)], то из (19.2) имеем условие сложения интенсивностей I1 и I2 волн:
(19.3)
Это означает, что для интенсивностей излучений, исходящих от двух (или более) обычных световых источников, выполняется достаточно простое правило сложения: интенсивность суммарного излучения равна сумме интенсивностей слагаемых волн. Это наблюдается в повседневной практике: освещенность от двух ламп равна сумме освещенностей, создаваемых каждой лампой в отдельности.
Еслиостается неизменной во времени, наблюдается интерференция света. Интенсивность результирующей волны принимает в разных точках пространства значения от минимального до некоторого максимального.
Интерференция света возникает от согласованных, когерентных источников, которые обеспечивают постоянную во времени разность фаз Dj у слагаемых волн в различных точках. Волны, отвечающие этому условию, называют когерентными.
Интерференция могла бы быть осуществлена от двух синусоидальных волн одинаковой частоты, однако на практике создать такие световые волны невозможно, поэтому когерентные волны получают, «расщепляя» световую волну, идущую от источника.
Такой способ применяется в методе Юнга. На пути сферической волны, идущей от источника S, устанавливается непрозрачная преграда с двумя щелями (рис. 19.1). Точки волновой поверхности, дошедшей до преграды, становятся центрами когерентных вторичных волн,
22* поэтому щели можно рассматривать как когерентные источники. На экране Э наблюдается интерференция.
Другой метод заключается в получении мнимого изображения S' источника S (рис. 19.2) с помощью зеркала (зеркало Ллойда). Источники S и S' являются когерентными. Они создают условия для интерференции волн. На рисунке показаны два интерферирующих луча, попадающие в некоторую точку А экрана Э.
Так как время т излучения отдельного атома ограничено, то разность ходалучей 1 и 2 при интерференции не должна быть слишком большой, в противном случае в точке А встретятся некогерентные волны. Наибольшее значение для интерференции определяется через скорость света и время излучения атома:
(19.4)
Реальные источники состоят из множества беспорядочно излучающих атомов, поэтому время t' их согласованного излучения на много порядков меньше времени излучения т отдельного атома. Вследствие этого реальная разность хода d' интерферирующих лучей должна быть на много порядков меньше, чем величина 5, определяемая формулой (19.4).
Расчет интерференционной картины можно сделать, используя формулу (19.1), если известны разность фаз интерферирующих волн и их амплитуды. Практический интерес представляют частные случаи: наибольшее усиление волн — максимум интенсивности (max), наибольшее ослабление — минимум интенсивности (min).
Отметим, что условия максимумов и минимумов интенсивностей удобнее выражать не через разность фаз, а через разность хода волн, так как пути, проходимые когерентными волнами при интерференции, обычно известны. Покажем это на примере интерференции плоских волн / и //, векторы Е которых перпендикулярны плоскости чертежа (рис. 19.3).
Колебания векторовэтих волн в некоторой точке В, удаленной на расстояния x1 и х2соответственно от каждого источника, происходят по гармоническому закону
(19.5)
Для общности вывода предположим, что волны распространяются в разных средах1 с показателями преломленияиСкорости распространения волн соответственно равны, где с — скорость света в вакууме. Тогда из (19.5) следует выражение для разности фаз
Так как длина волны в вакуумето вместо (19.6) имеем
(19.7)
Произведение геометрического пути волны на показатель преломления среды, т. е. хп, называют оптической длиной пути, а разность этих путей
(19.8)
— оптической разностью хода волн.
На основании (19.7) и (19.8) получим связь между разностью фаз и оптической разностью хода интерферирующих волн:
(19.9)
Используя законы сложения колебаний (см. § 5.3.) и соотношение (19.9), получаем условия максимума и минимума интенсивности света при интерференции — соответственно
Следовательно, максимум при интерференции наблюдается в тех точках, для которых оптическая разность хода равна целому числу длин волн (четному числу полуволн), минимум — в тех точках, для которых оптическая разность хода равна нечетному числу полуволн.
____________________________
1 Схематичность рис. 19.3 не позволяет показать разные среды распространения для различных волн.
2 Полезно заметить, что так какне зависит от времени, то слагаемые волны являются когерентными.
19.2. Интерференция света в тонких пластинках (пленках). Просветление оптики
Образование когерентных волн и интерференция происходят также при попадании света на тонкую прозрачную пластинку или пленку.
Пучок света падает на плоскопараллельную пластинку (рис. 19.4). Луч 1 из этого пучка попадает в точку А, частично отражается (луч 2), частично преломляется (луч AM). Преломленный луч испытывает отражение на нижней границе пластинки в точке М. Отраженный луч, преломившись в точке В, выходит в первую среду (луч 3). Лучи 2 и 3 образованы от одного луча, поэтому они когерентны и будут интерферировать.
Найдем оптическую разность хода лучей 2 и 3. Для этого из точки В проведем нормаль ВС к лучам. От прямой ВС до встречи лучей их оптическая разность хода не изменится, линза или глаз не внесут дополнительной разности фаз. До расхождения в точке А эти лучи в совокупности с другими, параллельными им, не показанными на рис. 19.4, формировали луч 1 и поэтому, естественно, имели одинаковую фазу. Луч 3 прошел расстояниев пластинке с показателем преломления п, луч 2 — расстояниев воздухе, поэтому их оптическая разность хода
(19.12)
так как. Согласно закону преломления,
(19.13)
где i — угол падения, г — угол преломления.
ИзАМО находим:(/ — толщина пластинки). Из АСВнаходим
Учитывая эти равенства, а также (19.13), получаем
Тогда оптическая разность хода интерферирующих волн равна
Рис.19.4
В формуле (19.14) не учтено одно важное обстоятельство. Опыт показывает, что при отражении света от среды оптически более плотной, т. е. с большим показателем преломления, фаза волны изменяется на п, что соответствует [см. (19.9)] изменению оптической разности хода на, т. е. при отражении света от среды оптически более плотной происходит «потеря полволны»1.
Если бы оба луча 2 vs. 3 теряли пол волны, то это не изменило бы выражения для(19.14). Однако луч 2 отражается от среды оптически более плотной (точка А) и теряет полволны, а луч 3 отражается от среды оптически менее плотной (точка М), его фаза при этом не изменяется. С учетом потери полволны оптическая разность хода
(19.15)
Так как, то d можно выразить и через угол падения:
|
|
|