Главная страница
Навигация по странице:

  • (19.24) Приравнивая (19.23) и (19.24), получаем (19.25)

  • (19.29) где ... — порядок главных максимумов.

  • Биофиз.РЕМИЗОВ. Механика. Акустика глава 4 Некоторые вопросы биомеханики


    Скачать 9.74 Mb.
    НазваниеМеханика. Акустика глава 4 Некоторые вопросы биомеханики
    АнкорБиофиз.РЕМИЗОВ.doc
    Дата08.12.2017
    Размер9.74 Mb.
    Формат файлаdoc
    Имя файлаБиофиз.РЕМИЗОВ.doc
    ТипДокументы
    #10792
    страница29 из 41
    1   ...   25   26   27   28   29   30   31   32   ...   41


    (19.16)

    Для максимума интерференции [см. (19.10), (19.16)] имеем

    (19.17)

    Для минимума интерференции [см. (19.11), (19.16)] имеем2

    (19.18)

    Формулы (19.17) и (19.18) соответствуют интерференции в от­раженном свете. Интерференция в проходящем через пластинку свете показана на рис. 19.5; изо­бражены только те лучи, которые необходимы для понимания яв­ления. Читатель может самостоятель­но вывести соответствующие фор-­
    мулы и убедиться, что для этого случая (19.17) соответствует мини­муму интерференции, а (19.18) —
    максимуму. С учетом закона со­хранения энергии это понятно, так как интерференция есть перерас- пределение световой энергии: падающий поток перераспределяется пластинкой на отраженный и

     

    Рис. 19.5

    проходящий (поглощением здесь пре­небрегаем), причем если отраженный максимален, то проходящий минимален, и наоборот.

    Интерференция при отражении наблюдается более отчетливо, чем в проходящем свете, что обусловлено существенным различи­ем интенсивностей отраженного и проходящего лучей. Если при­нять, что на границе раздела прозрачных сред отражается около 5% падающей энергии, то

    (19.19)

    где— интенсивности лучей 1 м 2 соответственно (см. рис.19.4). Интенсивность луча 3 с учетом двукратного преломления и однократного отражения равна

    (19.20)

    Из (19.19) и (19.20) имеем

    (19.21)

    что означает приближенное равенство амплитуд интерферирую­щих лучей при отражении: условие минимума соответствует по­чти полной темноте. Делая аналогичный расчет для проходящего света (рис. 19.5), получаем

    или для амплитуд

    (19.22)

    Из (19.22) видно, что в проходящем свете интерферируют вол­ны с существенно различными амплитудами, поэтому максиму­мы и минимумы мало отличаются друг от друга и интерференция слабо заметна.

    Проанализируем зависимости (19.17) и (19.18).

    Если на тонкую плоскопараллельную пластинку под некото­рым углом падает параллельный пучок монохроматического из­лучения, то, согласно этим формулам, пластинка в отраженном свете выглядит яркой или темной.

    При освещении пластинки белым светом условия максимума и минимума выполняются для отдельных длин волн, пластинка станет окрашенной, причем цвета в отраженном и проходящем свете будут дополнять друг друга до белого.

    При падении монохроматического света на пластинку переменной толщи­ны каждому значению I соответствует
    свое условие интерференции, поэтому пластинка пересечена светлыми и тем­ ными линиями (полосами) — линиями равной толщины. Так, в клине это система параллельных линий (рис. 19.6), в воздушном промежутке между линзой и пластинкой — кольца (кольца Ньютона).


    Рис. 19.6
    При освещении пластинки переменной толщины белым светом получаются разноцветные пятна и линии: окрашенные мыльные пленки, пленки нефти и масла на поверхности воды, переливча­тые цвета крыльев некоторых насекомых и птиц. В этих случаях не обязательна полная прозрачность пленок.

    Особый практический интерес имеет интерференция в тонких пленках в связи с созданием устройств, уменьшающих долю све­товой энергии, отраженной оптическими системами, и увеличи­вающих, следовательно, энергию, поступающую к регистрирую­щим системам — фотопластинке, глазу и т. п. С этой целью по­верхности оптических систем покрывают тонким слоем оксидов металлов так, чтобы для некоторой средней для данной области спектра длины волны был минимум интерференции в отражен­ном свете. В результате возрастает доля прошедшего света. По­крытие оптических поверхностей специальными пленками назы­вают просветлением оптики, а сами оптические изделия с такими покрытиями — просветленной оптикой.

    Если на стеклянную поверхность нанести ряд специально по­добранных слоев, то можно создать отражательный светофильтр, который вследствие интерференции будет пропускать или отра­жать излучение в определенном интервале длин волн.

     

    1 Для циклических процессов не имеет значения, уменьшается или уве­личивается фаза на к, поэтому равноценно было бы говорить не о потере, а о приобретении полволны, однако такая терминология не употребляется.

    2 Для того чтобы при максимумах и минимумах сохранить для k те же значения (0, 1, 2 и т. д.), формулу (19.16) длязаписываем

     

    § 19.3. Интерферометры и их применение. Понятие об интерференционном микроскопе

    Интерференцию света используют в специальных приборах — интерферометрах — для измерения с высокой степенью точнос­ти длин волн, небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

    На рис. 19.7 изображена принципиальная схема интерферо­метра Майкельсона, который относится к группе двухлучевых, так как световая волна в нем раздваивается1 и обе ее части, прой­дя разный путь, интерферируют.

    Луч 1 монохроматического света от источника S падает под уг­лом 45° на плоскопараллельную стеклянную пластинку А, задняя поверхность которой полупрозрачна, так как покрыта очень тон­ким слоем серебра. В точке О этот луч расщепляется на два луча 2 и 3, интенсивность которых приблизительно одинакова.

    Луч 2 доходит до зеркала /, отражается, преломляется в пластине А и частично выходит из пластины — луч 2'. Луч 3 из точки О идет к зеркалу //, отражается, возвращается к пластине А, где частично от­ражается, — луч 3'. Лучи 2' и 3', попадающие в глаз наблюдателя, когерентны, их интерференция может быть зарегистрирована.

    Обычно зеркала I и II располагают так, что лучи 2 и 3 от рас­хождения до встречи проходят пути одинаковой длины. Чтобы и оптическую длину путей сделать одинаковой, на пути луча 3 уста­навливают прозрачную пластину В, аналогичную А, для компен­сации двух путей, пройденных лучом 2 через пластину А. В этом случае наблюдается максимум интерференции.

    Если одно из зеркал сдвинуть на расстояние, то разность хода лучей станет к/2, что соответствует минимуму, произойдет смещение интерференционной картины на 0,5 полосы2.Если зеркало от первоначального положения переместить на расстоя­ние к/2, то оптическая разность хода
    интерферирующих лучей изменится на к, что соответствует максимуму, произойдет смещение интерференци­онной картины на целую полосу. Та­кая связь между перемещением зер­кала и изменением интерференцион­ной картины позволяет измерять длину волны по перемещению зерка­ла и, наоборот, перемещение по длине волны.

    Интерферометр Майкельсона применяют для измерения пока­зателя преломления. На пути лучей 2 и 3 устанавливают одинако­вые кюветы К (показаны штриховыми линиями на рис. 19.7), од­на из которых наполнена веществом с показателем преломления n1 а другая — с п2. Оптическая разность хода лучей

     

    Рис. 19.7

    (19.23)

    где I — длина однократного пути луча в среде, заполняющей кю­веты; так как лучи проходят кювету дважды, то расстояние равно 21. Предположим, что вследствие этой разности хода интерферен­ционная картина смещается наполос, тогда

    (19.24)

    Приравнивая (19.23) и (19.24), получаем

    (19.25)

    Если считать, что смещение на 0,1 полосы (к = 0,1) может быть зафиксировано, то, например, приимеем

    Как видно, интерференционный рефрактометр (интерферо­метр, приспособленный для измерения показателя преломления) способен фиксировать изменения показателя преломления в шес­том знаке после запятой.

    Интерференционный рефрактометр применяют, в частности, с санитарно-гигиеническими целями для определения содержания вредных газов.

    С использованием интерферометра Майкельсон доказал неза­висимость скорости света от движения Земли, что явилось одним из опытных фактов, способствовавших созданию специальной те­ории относительности.

    Сочетание двухлучевого интерферометра и микроскопа, полу­чившее название интерференционного микроскопа, используют в биологии для измерения показателя преломления, концентра­ции сухого вещества и толщины прозрачных микрообъектов.

    Принципиальная схема интерференционного микроскопа пока­
    зана на рис. 19.8. Луч света, как и в ин­терферометре, в точке А раздваивается,один луч проходит через прозрачный микрообъект М, а другой — вне его. В точке Д лучи соединяются и интерферируют, по результату интерференции судят об измеряемом параметре.

    Рис. 19.8

     

     

    1. 1      Строго говоря, вследствие многократных отражений может образо­ваться более чем два луча, однако их интенсивности незначительны

    2. 2   Вследствие разных углов падения лучей из S на пластину А или не­ строгой перпендикулярности зеркал I и II интерференционная картина практически всегда представлена полосами (полосы равного наклона или равной толщины соответственно). Этот вопрос подробно не рассматрива­ется.

      § 19.4. Принцип Гюйгенса—Френеля

    Объяснение и приближенный расчет дифракции света можно осуществить, используя принцип ГюйгенсаФренеля.

    Согласно Гюйгенсу, каждая точка волновой поверхности, ко­торой достигла в данный момент волна, является центром элемен­тарных вторичных волн, их внешняя огибающая будет волновой поверхностью в последующий момент времени (рис. 19.9; Slи S2— волновые поверхности соответственно в моменты ttи t2; t2 > tj).

    Френель дополнил это положение Гюйгенса, введя представ­ление о когерентности вторичных волн и их интерференции. В таком обобщенном виде эти идеи получили название принципа ГюйгенсаФренеля.

    Для того чтобы определить результат дифракции в некоторой
    точке пространства, следует рассчитать, согласно принципу Гюй­
    генса—Френеля, интерференцию вторичных волн, попавших в эту
    точку от различных элементов волновой по­верхности. Для волновой поверхности произ­вольной формы такой расчет достаточно сложен, но в отдельных случаях (сферическая или плоская волновая поверхность, симметричное расположение точки относительно волновой поверхности и непрозрачной преграды) вычисления сравнительно

     

    Рис. 19.9

     

    просты. Волновую поверх­ность при этом разбивают на отдельные участ­ки (зоны Френеля), расположенные определенным образом, что упрощает математические операции.

     

    § 19.5. Дифракция на щели в параллельных лучах

    На узкую длинную щель, расположенную в плоской непроз­рачной преграде MN, нормально падает плоскопараллельный пу­чок монохроматического света (рис. 19.10; АВ = а — ширина ще­ли; L — собирающая линза, в фокальной плоскости которой рас- -положен экран Э для наблюдения дифракционной картины).

    Если бы не было дифракции, то световые лучи, пройдя через щель, сфокусировались бы в точке О, лежащей на главной оптиче­ской оси линзы. Дифракция света на щели существенно изменяет явление.

    Рис. 19.10

    Будем считать, что все лучи пучка света исходят от одного уда­ленного источника1 и, следовательно, когерентны. АВ есть часть волновой поверхности, каждая точка которой является центром вторичных волн, распространяющихся за щелью по всевозмож­ным направлениям. Изобразить все эти вторичные волны невоз­можно, поэтому на рис. 19.10 показаны только вторичные волны, распространяющиеся под углом а к направлению падающего пуч­ка и нормали к решетке. Линза соберет эти волны в точке О' экра­на, где и будет наблюдаться их интерференция. (Положение точ­ки О' получают как пересечение с фокальной плоскостью побоч­ной оси СО' линзы, проведенной под углом а.)

    Чтобы узнать результат интерференции вторичных волн, про­делаем следующие построения. Проведем перпендикуляр AD к направлению пучка вторичных волн. Оптические пути всех вто­ричных волн от AD до О' будут одинаковыми, поскольку линза не вносит добавочной разности фаз между ними, поэтому та разность хода, которая образовалась у вторичных волн к AD, будет сохра­нена и в точке О'.

    Разобьем BD на отрезки, равные l/2. В случае, показанном на рис. 19.10, получено три таких отрезка: \ВВ2\ = 2Вг\ = \B1D\ = = l/2. Проведя из точек В2и В1 прямые, параллельные AD, разде­лим АВ на равные зоны Френеля: \ААг\ = \А1А2\ = \А2В\. Любой вторичной волне, идущей от какой-либо точки одной зоны Френеля, можно найти в соседних зонах соответствующие вторичные волны такие, что разность хода между ними будет/2. Например, вторичная волна, идущая от точки А2в выбранном направлении, проходит до точки О' расстояние на/2 больше, чем волна, иду­щая от точки A1, и т. д. Следовательно, вторичные волны, идущие от двух соседних зон Френеля, погасят друг друга, так как раз­личаются по фазе на.

    Число зон, укладывающихся в щели, зависит от длины волны и угла . Если щель АВ можно разбить при построении на не­четное число зон Френеля, a BD — на нечетное число отрезков, равных /2, то в точке О' наблюдается максимум интенсивнос­ти света:

    (19.26)

    Направление, соответствующее углу а = 0, также отвечает макси­муму, так как все вторичные волны придут в О в одинаковой фа­зе.

    Если щель АВ можно разбить на четное число зон Френеля, то наблюдается минимум интенсивности света:

    (19.27)

    Таким образом, на экране Э получится система светлых (мак­симум) и темных (минимум) полос, центрам которых соответству­ют условия (19.26) и (19.27), симметрично расположенных влево и вправо от центральной (а = 0), наиболее яркой, полосы. Интен­сивность I остальных максимумов быстро убывает по мере удале­ния от центрального максимума (рис. 19.11).

    Если щель освещать белым светом, то на экране Э [см. (19.26), (19.27)] образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света, так как при а = 0 усиливается свет всех длин волн.

    Рис. 19.11

    Дифракция света, как и интерференция, связана с перераспре­делением энергии электромагнитных волн в пространстве. В этом смысле щель в непрозрачном экране является не просто системой, ограничивающей поступление светового потока, но перераспреде­лителем этого потока в пространстве.

    Чтобы понять влияние соотношения между шириной щели и длиной волны на возможность наблюдения дифракционной кар­тины, рассмотрим некоторые частные случаи:

    1)<< а. Представив формулу для максимумов в виде



    имеем sin a

    0 практически для всех максимумов, и дифракция при этом не наблюдается. Этот случай соответствует достаточно широкой, по сравнению с длиной волны, щели. Так, например, не удается осуществить дифракцию в комнате при прохождении све­та через окно;

    2). На основании (19.27) для первых минимумов, которые ограничивают центральную светлую полосу, можно записать

    Отсюда следует, что при заданном условии sin а формально пре­вышает единицу, чего не может быть. Практически в этом случае вместо системы максимумов и минимумов весь экран будет слабо освещен.

     

     

    1 Практически точечный источник можно расположить в фокусе лин­зы, не показанной на рис. 19.10, так, что от линзы будет распространять­ся параллельный пучок когерентных волн.

     

     

    § 19.6. Дифракционная решетка. Дифракционный спектр

    Дифракционная решетка — оптическое устройство, пред­ставляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей.

    Дифракционную решетку можно получить нанесением непроз­рачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места — щели — будут пропускать свет; штрихи, соот­ветствующие промежутку между щелями, рассеивают и не пропус­кают света. Сечение такой дифракционной решетки (о) и ее условное обозначение (б) показанына рис. 19.12. Суммарную ширину щели а и промежутка Ъ между щелями называют постоянной или периодом дифракционной ре­шетки:

    Рис. 19.12 (19.28)

     

    Если на решетку падает пучок когерентных волн, то вторич­ные волны, идущие по всевозможным направлениям, будут ин­терферировать, формируя дифракционную картину.

    Пусть на решетку нормально падает плоскопараллельный пу­чок когерентных волн (рис. 19.13). Выберем некоторое направле­ние вторичных волн под углом а относительно нормали к решет­ке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода= А'В'. Такая же разность хода будет для вторич­ных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максиму­мы, для которых выполняется условие, или

    (19.29)

    где... — порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, а = 0). Равенство (19.29) является основной формулой дифракционной решетки1.

    Между главными максимумами образуются минимумы (доба­вочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хо­да вторичных волн, идущих под углом а от соответственных то­чек соседних щелей, равна/N, т. е.

    (19.30)

    где N — число щелей дифракционной решетки. Этой разности хо­да[см.(19.9)]отвечает разность фаз

     

     

     

     

    Рис. 19.13

     

    Если считать, что вторичная волна от первой щели имеет в мо­мент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна, от третьей —, от четвертой —и т. д. Результат сложения этих волн с учетом фазового раз­личия удобно получить с помощью векторной диаграммы: сумма N одинаковых векторов напряженности электрического поля, угол (разность фаз) между любыми соседними из которых есть , равна нулю. Это означает, что условие (19.30) соответствует минимуму. При разности хода вторичных волн от соседних щелей или разности фазбудет также получен минимум интерференции вторичных волн, идущих от всех ще­лей, и т. д.

    В качестве иллюстрации на рис. 19.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоя­щей из шести щелей: E1 Е2и т. д. — векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т. д. щелей. Возникающие при интерференции пять до­бавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в(а),(б), 180° (в),(г) и(д).

    Так, можно убедиться, что между центральным и каждым пер­вым главным максимумами имеется N - 1 добавочных минимумов, удовлетворяющих условию

    (19.31)

    Рис. 19.14


    .

    Особо отметим роль минимумов от одной щели. В направле­нии, отвечающем условию (19.27), каждая щель дает минимум, поэтому минимум от одной щели сохранится и для всей решетки. Если для некоторого направления одновременно выполняются ус­ловия минимума для щели (19.27) и главного максимума решет­ки (19.29), то соответствующий главный максимум не возникнет. Обычно стараются использовать главные максимумы, которые размещаются между первыми минимумами от одной щели, т. е. в интервале

    (19.33)

    При падении на дифракционную решетку белого или иного немо­нохроматического света каждый главный максимум, кроме цент­рального, окажется разложенным в спектр [см. (19.29)]. В этом случае k указывает порядок спектра.

    Таким образом, решетка является спектральным прибором, поэтому для нее существенны характеристики, которые позволя­ют оценивать возможность различения (разрешения) спектраль­ных линий.

    Одна из таких характеристик — угловая дисперсия — опреде­ляет угловую ширину спектра. Она численно равна угловому рас-

    Рис. 19.16

    стоянию da между двумя линиями спектра, длины волн которых различаются на единицу

    Дифференцируя (19.29) и используя только положительные значения величин, получаем

    Из последних двух равенств имеем

    (19.34)

    Так как обычно используют небольшие углы дифракции, то

    . Угловая дисперсия D тем выше, чем больше порядокспектра и чем меньше постоянная с дифракционной решетки.

    Возможность различать близкие спектральные линии зависит не 1?олько от ширины спектра, или угловой дисперсии, но и от ширины Спектральных линий, которые могут накладываться друг на друга.

    Принято считать, что если между двумя дифракционными мак­симумами одинаковой интенсивности находится область, где сум­марная интенсивность составляет 80% от максимальной, то спект­ральные линии, которым соответствуют эти максимумы, уже раз­решаются. При этом, согласно Дж. У. Рэлею, максимум одной линии совпадает с ближайшим минимумом другой, что и считается критерием разрешения. На рис. 19.17 изо­бражены зависимости интенсивности / отдель­ных линий от длины волны (сплошная кривая) и их суммарная интенсивность (штриховая кривая). Из рисунков легко увидеть неразре-шенность двух линий (а) и предельную разре-шенность (б), когда максимум одной линии совпадает с ближайшим минимумом другой.

    Разрешение спектральных линий количе­ственно оценивается разрешающей способ­ностью, равной отношению длины волны к наименьшему интервалу длин волн, которые еще могут быть разрешены:

    (19.35)

    Так, если имеются две близкие линии с длинами волн, то (19.35) можно приближенно записать в виде

    . (19.36)

    Условие главного максимума для первой волны

    С ним совпадает ближайший минимум для второй волны, усло­вие которого

    Приравнивая правые части последних двух равенств, имеем

    откуда [с учетом (19.36)]

    Итак, разрешающая способность дифракционной решетки тем больше, чем больше порядокспектра и число N штрихов.

    Рассмотрим пример. В спектре, полученном от дифракционной ре­шетки с числом щелей N = 10 000, имеются две линии вблизи длины вол­ны= 600 нм. При какой наименьшей разности длин волнэти линии различаются в спектре третьего порядка (k = 3)?

    Для ответа на этот вопрос приравняем (19.35) и (19.37), ,Откуда Подставляя числовые значения в эту формулу, находим = 600 нм(3* 10 000) = 0,02 нм.

    Так, например, различимы в спектре линии с длинами волн 600,00 и 600,02 нм и не различимы линии с длинами волн 600,00 и 600,01 нм.

    Выведем формулу дифракционной ре­шетки для наклонного падения когерент­ных лучей (рис. 19.18,— угол падения). Условия формирования дифракционной картины (линза, экран в фокальной плос­кости) те же, что и при нормальном паде­нии.

    Проведем перпендикуляры А'В к падаю­щим лучам и АВ' ко вторичным волнам, идущим под угломк перпендикуляру, восставленному к плоскости решетки. Из рис. 19.18 видно, что к положению А'В лучи имеют одинаковую фазу, от АВ' и далее разность фаз лучей сохраняется. Следовательно, разность хо­да есть

    d= ВВ'-АА. (19.38)

    Из DАА'В имеем АА' = АВ sin (3 = с sin р. Из DВВ'А находим ВВ' = АВ sin a = = с sin а. Подставляя выражения для АА' и ВВ' в (19.38) и учитывая ус­ловие для главных максимумов, имеем

    с (sin а - sin Р) = + kX.(19.39)

    Центральный главный максимум соответствует направлению падающих лучей (а = b).

    Наряду с прозрачными дифракционными решетками исполь­зуют отражательные, у которых штрихи нанесены на металличе­скую поверхность. Наблюдение при этом ведется в отраженном свете. Отражательные дифракционные решетки, изготовленные на вогнутой поверхности, способны образовывать дифракцион­ную картину без линзы.

    В современных дифракционных решетках максимальное чис­ло штрихов составляет более 2000 на 1 мм, а длина решетки более 300 мм, что дает значение N около миллиона.

     

    ______________________

    1 Из формулы (19.29) видно, что максимальное значениене может превышать величины c/l.

     

     

    § 19.7. Основы рентгеноструктурного анализа

    Основная формула дифракционной решетки (19.29) может быть использована не только для определения длины волны, но и для решения обратной задачи — нахождения постоянной дифрак­ционной решетки по известной длине волны. Такая скромная применительно к обычной дифракционной решетке задача подво­дит к практически важному вопросу — измерению параметров кристаллической решетки посредством дифракции рентгенов­ских лучей, что является содержанием рентгеноструктурного анализа.

    CF — перпендикуляры к падающим и отраженным лучам соот­ветственно. Разность хода отраженных лучей 1’ и 2'
    1   ...   25   26   27   28   29   30   31   32   ...   41


    написать администратору сайта