|
Биофиз.РЕМИЗОВ. Механика. Акустика глава 4 Некоторые вопросы биомеханики
§ 15.3. Воздействие переменным магнитным полем
В проводящих телах, находящихся в переменном магнитном поле, вследствие электромагнитной индукции возникают токи, которые принято называть вихревыми.
Эти токи могут использоваться для прогревания биологических тканей и органов. Такой лечебный метод — индуктотермия — имеет ряд преимуществ перед методом, изложенным в § 15.2.
Рассмотрим, от каких факторов зависит степень нагревания тканей при индуктотермии. Схема воздействия показана на рис. 15.6. Согласно основному закону электромагнитной индукции в контуре при изменении магнитного потока возникает ЭДС, равная
где Ф — магнитный поток, пронизывающий контур, S — площадь площадки, охватываемой контуром, В — магнитная индукция во всех точках этой площадки [см. (13.7); предполагается,
И спользуя формулу R = pl/Sдля сопротивления, получаем
что α = 0]. Из последней формулы на основании закона Ома можно записать выражение для силы тока в контуре:
где Ri — некоторый коэффициент, учитывающий геометрические размеры образца (ткани). Предположим, что магнитная индукция изменяется по гармоническому закону В = Втcos ωt, тогда
где k— коэффициент, зависящий от размеров образца. Таким образом, при индуктотермии количество теплоты, выделяющееся в тканях, пропорционально квадратам частоты и индукции переменного магнитного поля и обратно пропорционально удельному сопротивлению. Поэтому сильнее будут нагреваться ткани, богатые сосудами, например мышцы, чем такие ткани, как жир. Обычно при индуктотермии применяют местное воздействие переменного магнитного поля, используя спирали или плоские свернутые кабели.
Лечение вихревыми токами возможно также при общей дарсонвализации. В этом случае пациента помещают в клетку-соленоид, по виткам которого пропускают импульсный ток высокой частоты.
§ 15.4. Воздействие переменным электрическим полем
В тканях, находящихся в переменном электрическом поле (см. схематическое изображение на рис. 15.7, здесь электроды не касаются ткани), возникают токи проводимости в проводниках и частично в диэлектрике, а также имеет место изменение поляризации диэлектрика. Обычно для лечебной цели используют электрические поля ультравысокой частоты, поэтому соответствующий физиотерапевтический метод получил название УВЧ-терапии.
Для того чтобы оценить эффективность действия поля УВЧ, необходимо рассчитать количество теплоты, выделяющееся в проводниках и диэлектриках.
Пусть тело, проводящее электрический ток, находится в переменном электрическом поле. В данном случае электроды не касаются тела. Поэтому выделяющееся в теле количество теплоты целесообразно выразить не через плотность тока на электродах [см. (15.2)], а через напряженность Е электрического поля в проводящем теле.
Выполним достаточно простые преобразования: Р = U2/R = = E2l2S/(pl) = E2Sl/p. Разделив это равенство на объем SIтела, получим количество теплоты, выделяющееся за 1 с в 1 м3 ткани:
где Е — эффективная напряженность1 электрического поля.
Рассмотрим теперь диэлектрик с диэлектрической проницаемостью е, находящийся в переменном электрическом поле.
Среднее значение мощности в цепи переменного тока выражается формулой:
г де ф — разность фаз между силой тока и напряжением. Если применить формулу (15.7) к конденсатору с идеальным изолятором (см. рис. 14.6), то, учитывая φ = π/2, получаем нулевое значение мощности. В реальном диэлектрике небольшой ток проводимости и периодическое изменение поляризации вызывают поглощение подводимой электрической мощности, диэлектрик нагревается, на что расходуется часть энергии переменного электрического поля, т. е. имеют место диэлектрические потери.
Как видно из формулы (15.7), наличие потерь в диэлектрике означает, что между силой тока и напряжением будет сдвиг по фазе φ = π/2 (рис. 15.8).
Представим на векторной диаграмме (см. рис. 15.8) амплитуду тока 1тдвумя составляющими: реактивной 1ри активной Ia. Реактивная составляюшая сдвинута по фазе относительно напряжения Uна π/2 и не вызывает диэлектрических потерь, активная составляющая направлена вдоль вектора напряжения, она и обусловливает диэлектрические потери. Угол 5 между 1ти Iрназывают углом диэлектрических потерь. Как видно на рис. 15.8, чем больше этот угол, тем больше активная составляющая силы тока. На практике реактивную и активную составляющие силы тока связывают через тангенс угла диэлектрических потерь:
Из рис. 15.8 видно, что 7а = /m cos ф; сопоставляя это с (15.8), имеем
Учитывая (15.9), преобразуем формулу для мощности (15.7):
Амплитуда реактивной составляющей силы тока Iр — это фактически амплитуда силы тока, соответствующая идеальному конденсатору [см. (14.32)]. Поэтому
Подставляя (15.11) в (15.10) и раскрывая выражение для емкости плоского конденсатора, получаем среднюю мощность:
В место амплитуды напряжения Umиспользуем эффективное значение . Из (15.12) имеем
Р азделив это равенство на объем SIдиэлектрика, найдем
(под Е следует понимать эффективное значение напряженности Электрического поля).
Сопоставляя формулы (15.6) и (15.13), можно заметить, что в обоих случаях выделяемое количество теплоты пропорционально квадрату эффективной напряженности электрического поля. Она также зависит от характеристик среды, а для диэлектрика — и от частоты поля.
В России в аппаратах УВЧ используют частоту 40,58 МГц, в Случае токов такой частоты диэлекрические ткани организма нагреваются интенсивнее проводящих.
§ 15.5. Воздействие электромагнитными волнами
Физиотерапевтические методы, основанные на применении электромагнитных волн СВЧ-диапазона, в зависимости от длины волны получили два названия: микроволновая терапия (частота 2375 МГц, длина волны 12,6 см) и ДЦВ-терапия, т. е. терапия дециметровых волн (частота 460 МГц, длина волны 65,2 см).
Наиболее разработана в настоящее время теория о тепловом действии СВЧ-полей на биологические объекты. Электромагнитная волна поляризует молекулы вещества и периодически переориентирует их как электрические диполи. Кроме того, электромагнитная волна воздействует на ионы биологических систем и вызывает переменный ток проводимости. Таким образом, в диэлектрике, находящемся в электромагнитном поле, происходит как изменение поляризации диэлектрика, так и протекание токов проводимости. Все это приводит к нагреванию вещества. Большое значение имеют диэлектрические потери, обусловленные переориентацией молекул воды (γ-дисперсия, см. § 14.4). В связи с этим максимальное поглощение энергии микроволн происходит в таких тканях, как мышцы и кровь, а в костной и жировой ткани воды меньше, они меньше и нагреваются.
На границе сред с разными коэффициентами поглощения электромагнитных волн, например на границе тканей с высоким и низким содержанием воды, могут возникнуть стоячие волны, обусловливая местный перегрев тканей. Наиболее подвержены перегреву ткани с недостаточным кровоснабжением и, следовательно, плохой терморегуляцией, например хрусталик глаза, стекловидное тело и др.
Электромагнитные волны могут влиять на биологические процессы, разрывая водородные связи и влияя на ориентацию макромолекул ДНК и РНК.
При попадании электромагнитной волны на участок тела происходит ее частичное отражение от поверхности кожи. Степень отражения зависит от различия диэлектрических проницаемостей воздуха и биологических тканей. Если облучение электромагнитными волнами осуществляется дистанционно (на расстоянии), то может отражаться до 75% энергии электромагнитных волн. В этом случае невозможно по мощности, генерируемой излучателем, судить об энергии, поглощаемой пациентом в единицу времени. При контактном облучении электромагнитными волнами (излучатель соприкасается с облучаемой поверхностью) генерируемая мощность соответствует мощности, воспринимаемой тканями организма.
Глубина проникновения электромагнитных волн в биологические ткани зависит от способности этих тканей поглощать энергию волн, которая, в свою очередь, определяется как строением тканей (главным образом содержанием воды), так и частотой электромагнитных волн. Так, сантиметровые электромагнитные волны, используемые в физиотерапии, проникают в мышцы, кожу, биологические жидкости на глубину около 2 см, а в жир, кости — около 10 см. Для дециметровых волн эти показатели приблизительно в 2 раза выше.
Учитывая сложный состав тканей, условно считают, что при микроволновой терапии глубина проникновения электромагнитных волн равна 3—5 см от поверхности тела, а при ДЦВ-терапии — до 9 см.
РАЗДЕЛ 5 Медицинская электроника
Электроника. Это понятие широко распространено в настоящее время. Являясь технической наукой, электроника основывается прежде всего на достижениях физики. Можно смело сказать, что без электронной аппаратуры сегодня невозможны ни диагностика заболеваний, ни эффективное их лечение. В разделе излагаются лишь некоторые, наиболее существенные аспекты общей и медицинской электроники и описывается наиболее характерная медицинская электронная аппаратура. Некоторые приборы и аппараты медицинской электроники представлены в других разделах
ГЛАВА 16
Содержание электроники. Электробезопасность. Надежность медицинской электронной аппаратуры
В главе наряду с общим содержанием электроники рассматриваются важные практические вопросы: электробезопасность и надежность медицинской электронной аппаратуры.16.1. Общая и медицинская электроника. Основные группы медицинских электронных приборов и аппаратов
§ 16.1. Общая и медицинская электроника. Основные группы медицинских электронных приборов и аппаратов
Физика, как и любая другая наука, развивалась и развивается, в связи с потребностями общества, ее прогресс стимулируется практическими задачами. В свою очередь, развитие физики способствует решению практических, в том числе и технических проблем. Так, например, в результате достижений в области исследований электромагнитных явлений получили бурное развитие соответствующие отрасли техники: электро- и радиотехника. Постепенно многие разделы радиотехники стали именовать радиоэлектроникой, или электроникой.
Термин «электроника» в значительной степени условный, ему трудно дать четкое определение. Правильнее всего, вероятно, под электроникой понимать область науки и техники, в которой рассматриваются работа и применение электровакуумных,ионных и полупроводниковых устройств (приборов).
Электронику в широком смысле слова (общую электронику) можно подразделить на группы либо по области применения, либо по классу используемых устройств, либо по категории теоретических вопросов. Так выделяют физическую электронику, имея в виду раздел физики, рассматривающий электропроводимость тел, контактные и термоэлектронные явления; под технической электроникой понимают те ее разделы, в которых описываются устройства приборов и аппаратов и схемы их включения; полупроводниковой электроникой называют то, что относится к применению полупроводниковых приборов, и т. п.
Иногда всю электронику подразделяют на три крупные области: вакуумная электроника, которая охватывает вопросы создания и применения электровакуумных приборов (электронные лампы, фотоэлектронные устройства, рентгеновские трубки); твердотельная электроника, которая охватывает вопросы создания и применения полупроводниковых приборов, в том числе и интегральных схем, квантовая электроника — специфический раздел электроники, имеющий отношение к лазерам и мазерам.
Все эти примеры, с одной стороны, дают представление о содержании электроники, с другой стороны, лишний раз отмечают неопределенность ее границ.
Электроника — прикладная отрасль знаний. Одно из распространенных применений электронных устройств связано с диагностикой и лечением заболеваний. Разделы электроники, в которых рассматриваются особенности применения электронных систем для решения медико-биологических задач, а также устройство соответствующей аппаратуры, получили название медицинской электроники.
Медицинская электроника основывается на сведениях из физики, математики, техники, медицины, биологии, физиологии и других наук, она включает в себя биологическую и физиологическую электронику.
Применения электроники в медицине многообразны, ибо это постоянно расширяющаяся область. В настоящее время многие традиционно «неэлектрические» характеристики — температуру, смещение тела, биохимические показатели и др. — при измерениях преобразуют в электрический сигнал. Информацию, представленную электрическим сигналом, удобно передавать на расстояние и надежно регистрировать. Можно выделить следующие основные группы электронных приборов и аппаратов, используемых для медико-биологических целей.
Устройства для получения (съема), передачи и регистрации медико-биологической информации. Такая информация может быть не только о процессах, происходящих в организме (биологических тканях, органах, системах), но и о состоянии окружающей среды (санитарно-гигиеническое назначение), о процессах, происходящих в протезах, и т. д. Сюда относится большая часть диагностической аппаратуры: баллистокардиографы, фонокарди-
ографы, реографы и др. Для подавляющего большинства этих приборов в радиотехническом отношении характерно наличие усилителей электрических сигналов.
К этой группе можно отнести и электромедицинскую аппаратуру для лабораторных исследований, например рН-метр.
Электронные устройства, обеспечивающие дозирующее воздействие на организм различными физическими факторами (ультразвук, электрический ток, электромагнитные поля и др.) с целью лечения: аппараты микроволновой терапии, аппараты для электрохирургии, кардиостимуляторы и др. С физической точки зрения эти устройства являются генераторами различных электрических сигналов.
Кибернетические электронные устройства: а) электронные вычислительные машины для переработки, хранения и автоматического анализа медико-биологической информации; б) устройства для управления процессами жизнедеятельности и автоматического регулирования состоянием окружающей человека среды; в) электронные модели биологических процессов и др.
Применение электронных медицинских приборов и аппаратов повышает эффективность диагностики и лечения и увеличивает производительность труда медицинского персонала.
§ 16.2. Электробезопасность медицинской аппаратуры
Одним из важных вопросов, связанных с использованием электронной медицинской аппаратуры, является ее электробезопасность как для пациентов, так и для медицинского персонала.
Больной вследствие различных причин (ослабленность организма, действие наркоза, отсутствие сознания, наличие электродов на теле, т. е. прямое включение пациента в электрическую цепь, и др.) оказывается в особо электроопасных условиях по сравнению со здоровым человеком. Медицинский персонал, работающий с медицинской электронной аппаратурой, также находится в условиях риска поражения электрическим током.
В электрической сети и в технических устройствах обычно задают электрическое напряжение, однако действие на организм или органы оказывает электрический ток, т. е. заряд, протекающий через биологический объект в единицу времени.
Сопротивление тела человека между двумя касаниями (электродами) складывается из сопротивления внутренних тканей и органов
и сопротивления кожи (рис. 16.1). Сопротивление Rвн внутренних частей организма слабо зависит от общего состояния человека, в расчетах принимают Rвн = 1 кОм для пути ладонь — ступня. Сопротивление Rк кожи существенно зависит от внутренних и внеш-
них причин (потливость, влажность). Кроме того, на разных участках тела кожа имеет разную толщину и, следовательно, различное сопротивление. Поэтому (учитывая неопределенность сопротивления кожи человека) ее вообще в расчет не принимают и считают I = U/Rвн= U/1000 Ом. Так, например, I = 220/1000 А = 220 мА при U = 220 В. На самом деле кожа имеет сопротивление, которое может превосходить сопротивление внутренних органов, и сила тока в реальной ситуации при напряжении 220 В может быть существенно меньше 220 мА. Понятно, что при работе с электронной медицинской аппаратурой должны быть предусмотрены все возможные меры по обеспечению безопасности.
Основное и главное требование — сделать недоступным касание частей аппаратуры, находящихся под напряжением.
Для этого прежде всего изолируют части приборов и аппаратов, находящиеся под напряжением, друг от друга и от корпуса аппаратуры. Изоляция, выполняющая такую роль, называется основной или рабочей. Отверстия в корпусе должны исключать возможность случайного проникновения и касания внутренних частей аппаратуры пальцами, металлическими цепочками украшений и т. п. Однако даже если части аппаратуры, находящиеся под напряжением, и закрыты от прикосновения, это еще не обеспечивает полной безопасности по крайней мере по двум причинам.
Во-первых, какой бы ни была изоляция между внутренними частями аппаратуры и ее корпусом, сопротивление приборов и аппаратов переменному току не бесконечно. Не бесконечно и сопротивление между проводами электросети и землей. Поэтому при касании человеком корпуса аппаратуры через тело человека пройдет некоторый ток, называемый током утечки.
Во-вторых, не исключено, что благодаря порче рабочей изоляции (старение, влажность окружающего воздуха) возникает электрическое замыкание внутренних частей аппаратуры с корпусом — «пробой на корпус», и внешняя, доступная для касания часть аппаратуры (корпус) окажется под напряжением.
И в одном и в другом случае должны быть приняты меры, которые исключали бы поражение током лиц при касании корпуса прибора или аппарата. Рассмотрим эти вопросы несколько подробнее
Сила тока утечки на корпус, как и всякий ток проводимости, по закону Ома зависит от напряжения и сопротивления цепи. Цепь тока утечки схематически показана на рис. 16.2. Здесь 1 — корпус аппарата, внутри него трансформатор, первичная обмотка 2 которого подсоединена к источнику напряжения сети 3. Вторичная обмотка 4 трансформатора соединяется с рабочей частью аппаратуры (на рисунке не показана). Электрическая сеть независимо от наличия или отсутствия заземления всегда имеет некоторую проводимость относительно земли, которая определяется активным (омическим) сопротивлением R3изоляции и заземления и емкостью С3 проводников сети и земли. Электропроводимость между сетью и корпусом зависит соответственно от омического сопротивления рабочей изоляции и от емкости между внутренними частями аппаратуры, находящимися под напряжением, и корпусом, т. е. от Rути Сут . Все эти элементы изображены на рис. 16.2 штриховыми линиями, так как они являются распределенными параметрами и не представляют реальных резисторов и конденсаторов. Штрихпунк-тирной линией на рисунке показан путь тока утечки, проходящего через тело человека, касающегося корпуса аппарата или прибора.
Так как сила тока утечки существенно влияет на безопасность эксплуатации медицинской аппаратуры, то при конструировании и изготовлении этих изделий учитывают допустимую силу этого тока как при нормальной работе приборов и аппаратов, так и в случае единичного нарушения. Под единичным нарушением понимают отказ одного из средств защиты от поражения электрическим током. По условиям электробезопасности единичное нарушение не должно создавать непосредственной опасности для человека. Допустимые силы токов утечки различают по типам электромедицинских изделий в зависимости от их назначения и степени защиты от поражения током. Во всяком случае, ток утечки всегда меньше порога ощутимого тока (см. § 15.2).
При пробое на корпус доступные (внешние) для касания части аппаратуры оказываются под напряжением. И в этом случае при нарушенных условиях работы изделий следует предусмотреть возможные способы защиты от поражения электрическим током. К таким основным защитным мерам относятся заземление и зануление. Для понимания физической стороны этих мер нужно знать, как электромедицинская аппаратура подключается к трехфазной системе.
При техническом решении вопроса о наиболее экономной передаче переменного тока по проводам русским инженером М. О. Доливо-Добровольским в конце прошлого века была предложена трехфазная система тока (трехфазный ток). Один из вариантов этой системы представлен на рис. 16.3: 1 — фазовые обмотки одного генератора, в которых индуцируется переменное напряжение; 2 — нагрузки (потребители); 3 — линейные провода (они соединяют генератор с потребителем). Для того чтобы потребитель в одном контуре трехфазной цепи не влиял на режим работы другого контура, целесообразно включить нейтральный (нулевой) провод 4. Напряжения Uлмежду линейными проводами называются линейными, а между линейными и нейтральным проводом — фазовыми (Uф). Соотношение между фазовым и линейным напряжением следующее:
Обычно электромедицинская аппаратура присоединяется как однофазная нагрузка к линейному или фазовому напряжению. На рис. 16.4 показано питание аппарата или прибора линейным напря-
жением, нейтраль не заземлена. Для упрощения предположим, что линейные провода имеют совершенную изоляцию, а нейтральный провод имеет относительно земли сопротивление Rи(показано штриховой линией). Если бы не было защитного заземления R3, то при пробое и касании человеком корпуса на человеке оказалось бы напряжение. Штрихпунктиром показана цепь, в которую оказался бы включенным человек. Из рисунка видно, что напряжение Uф перераспределяется между сопротивлениями Rчтела человека, включая и сопротивление земли (пола), и Rи. Если, например, Rч= 0,5 Rи, a Uф = 220 В, то на человеке может оказаться 220/3 В 75 В. Для защиты человека в этом случае необходимо заземлить корпус. Сопротивление R3 заземления подсоединено параллельно Rч. Так как R3 мало (должно быть не более 4 Ом), то Rи» R3и фактически на этом сопротивлении и, следовательно, на человеке будет весьма незначительное напряжение.
Существенно отметить, что благодаря значительному сопротивлению Rипробой на корпус не вызовет аварийного тока, достаточного для срабатывания предохранителя, поэтому это нарушение может остаться незамеченным для персонала. Однако если рядом окажется аппарат (прибор) с пробоем на корпус от другого линейного провода (другой фазы), то между корпусами двух приборов появится линейное напряжение. Одновременное прикосновение к таким корпусам весьма опасно.
В настоящее время в большинстве случаев распространены трехфазные сети с заземленной нейтралью. В этом случае защитное заземление малоэффективно. В самом деле, при хорошем заземлении нейтрали (рис. 16.4) Rи мало, например Rи≈ R3, напряжение Uф перераспределится между сопротивлениями, и между корпусом и землей окажется напряжение, равное 0,5 Uф. Это
опасно для человека. Скорее всего при пробое сработает предохранитель, однако это может произойти не сразу или даже вовсе не произойти при недостаточной силе аварийного тока. Для того чтобы предохранитель сработал, используют другой вид защиты — защитное зануление, при котором корпус аппаратуры соединяют проводниками с нулевым проводом сети (рис. 16.5). В случае пробоя на корпус возникает короткое замыкание (показано штрихпунктиром), срабатывает предохранитель, и аппаратура отключается отистарчника напряжения. Так как всегда имеется вероятность обрыва нулевого провода, то нейтраль заземляют в нескольких местах.
Резюмируя сказанное, еще раз отметим, что защитные заземления или зануления должны обеспечивать в установках с изолированной нейтралью безопасную силу тока, проходящего через тело человека при замыкании цепи на заземленные части аппаратуры, в установках с заземленной нейтралью — автоматическое отключение аппаратуры от электрической сети.
Выше были рассмотрены лишь основные вопросы электробезопасности при работе с электромедицинской аппаратурой. Так как трудно дать электротехническое описание различных ситуаций, способных повлечь несчастный случай, то ограничимся в заключение лишь некоторыми общими указаниями:
— — не касайтесь приборов одновременно двумя обнаженными руками, частями тела;
— — не работайте на влажном, сыром полу, на земле;
— — не касайтесь труб (газ, вода, отопление), металлических конструкций при работе с электроаппаратурой;
— — не касайтесь одновременно металлических частей двух аппаратов (приборов).
При проведении процедур с использованием электродов, наложенных на пациента, трудно предусмотреть множество вариантов создания электроопасной ситуации (касание больным отопительных батарей, газовых и водопроводных труб и кранов, замыкание через корпус соседней аппаратуры и т. п.), поэтому необходимо четко следовать инструкции по проведению данной процедуры, не делая каких-либо отступлений от нее.
|
|
|