Главная страница
Навигация по странице:

  • (формула Томсона)

  • § 14.2. Переменный ток

  • § 14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений

  • § 14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии

  • Биофиз.РЕМИЗОВ. Механика. Акустика глава 4 Некоторые вопросы биомеханики


    Скачать 9.74 Mb.
    НазваниеМеханика. Акустика глава 4 Некоторые вопросы биомеханики
    АнкорБиофиз.РЕМИЗОВ.doc
    Дата08.12.2017
    Размер9.74 Mb.
    Формат файлаdoc
    Имя файлаБиофиз.РЕМИЗОВ.doc
    ТипДокументы
    #10792
    страница23 из 41
    1   ...   19   20   21   22   23   24   25   26   ...   41
    §14.1. Свободные электромагнитные колебания

    Свободными (собственными) электромагнитными ко­лебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

    Рассмотрим колебательный контур, со­стоящий из резистора R, катушки индуктивности Lи конденсатора С (рис. 14.1); сопротивлением проводов и возможным излучением электромагнитных волн пренебрегаем. Конденсатор ключом К заряжается от источ-

    ника , а затем разряжается на резистор и катушку индуктивности. Приэтом в контуре возникает ЭДС самоиндукции ( ко­торая, согласно закону Ома, будет равна сумме напряжений на эле­ментах цепи: на резисторе UR = IRи конденсаторе Uc = q/cПоэтомуnзапишем

    Преобразуем это уравнение, поделив все члены на L

     

    Э
    то есть дифференциальное уравнение свободных электромаг­нитных колебаний. Произведя замены:

    п
    олучим уравнение

    Незатухающие колебания. Если контур не содержит резис­тора (рис. 14.2), то из (14.4) имеем:

    Известно, что (14.5) является дифференциальным уравнением гармонического колебания, его решение [см. (5.8)] имеет вид

    где qm— наибольший (начальный) заряд на обкладках конденса­тора, ω0 — круговая частота собственных колебаний (собст­венная круговая частота) контура, φ0 — начальная фаза.

    Графики зависимости заряда (напряжения) от времени анало­гичны графику зависимости смещения x(t), а график зависимости силы тока от времени — графику скорости v (t) (см. рис. 5.4).

    Из (14.3) найдем выражение для периода собственных колеба­ний (формула Томсона):

     


    Затухающие колебания. При наличии резистора (рис. 14.1) процесс в контуре описывается уравнением (14.4), которое анало­гично уравнению (5.19) для механических колебаний. При усло­вии, что затухание не слишком велико, находим следующее решение [см. (

    5.20)]:

     


    Неравенство (14.12) выполняется, в частности, в контуре при отсутствии индуктивности (L → 0). Для этого случая (разряд кон­денсатора на резистор) из (14.1) имеем

    И
    нтегрируя последнее уравнение, находим

     

     


     

    Потенцируя второе из выражений (14.14), имеем

     


     

    У
    равнение (14.15) описывает процесс разрядки конденсатора С на резистор R. При отсутствии индуктивности колебания не воз­никают (рис. 14.3, а). По такому закону изменяется и напряже­ние на обкладках конденсатора. Теоретически такой процесс, как это следует из (14.15), протекает бесконечно долго, однако приня­то длительность подобных процессов оценивать временем, в тече­ние которого параметр, характеризующий процесс (в данном слу­чае заряд и напряжение), уменьшится в е раз (постоянная вре­мени, τ).

    Выражение для постоянной времени можно получить из (14.15),

    е
    сли вместо qподставить qm/e , a tзаменить на τ: откуда для контура с конденсатором и резистором постоянная времени равна

     

    Можно показать, что зарядка конденсатора от источника по­стоянной ЭДС также происходит по экспоненциальному закону

    Г
    рафик этой зависимости представлен на рис. 14.3,6.

     

    § 14.2. Переменный ток

    В широком смысле слова переменный ток — любой ток, изме­няющийся со временем. Однако чаще термин «переменный ток» применяют к квазистационарным токам, зависящим от времени по гармоническому закону.

    Квазистационарным называют такой ток, для которого время установления одинакового значения по всей цепи зна­чительно меньше периода колебаний.

    Б
    удем считать, что для квазистационарных токов, так же как и для постоянных, сила тока одновременно одинакова в любом се­чении неразветвленного проводника. Для них справедлив закон Ома, однако сопротивление цепи зависит от частоты изменения тока. Потерями энергии на электромагнитное излучение этих то­ков пренебрегаем. Переменный ток можно рассматривать как вы­нужденные электромагнитные колебания.

    П
    редставим три разных цепи (рис. 14.4, а — 14.6, а), к каждой из которых приложено переменное напряжение

     

    где Um— амплитудное значение напряжения, ю — круговая час­тота колебаний.

    Д
    ля цепи с резистором (рис. 14.4, а) выражение (14.18) запишем в форме

    И
    спользуя закон Ома, получим выражение для тока через со­противление R:

    где





    -амплитуда тока. Как видно из (14.19) и (14.20), ток и напряжение при этом изменяются в одной фазе, что можно изобразить с помощью векторной диаграммы (рис. 14.4, б). На диаграмме амплитуды URm и Iтпредставлены как одинаково направленные векторы, равномерно вращающиеся против часовой стрелки с угловой скоростью ω. Про­екция этих векторов на «ось токов» (горизонтальная прямая) дает мгновенные значения напряжения и тока. В цепи с сопротивлением R(омическим сопротивлением) происходит выделение тепла.

    Цепь, представленная на рис. 14.5, а, содержит катушку с ин­дуктивностью L, омическое сопротивление равно нулю.

    Для этой цепи выражение (14.18) запишем в форме

     


    При приложении переменного напряжения ULв катушке возни­кает противоположно направленная ЭДС самоиндукции , при этом, согласно закону Ома, UL= ξi.Подставляя (14.23) в (14.22), имеем

     


    Постоянный член в (14.25) равен нулю, так как в цепи действу­ет только переменное напряжение и нет причин для появления постоянной составляющей тока. Окончательно получаем

     


    — амплитуда тока. Как видно из (14.26) и (14.22), фаза тока t - π/2), а напряжения — ωt. Следовательно, ток отстает по фазе от напряжения на π/2, что показано на векторной диаграмме рис. 14.5, б.

    Сравнивая (14.27) с законом Ома, заметим, что выражение

    играет роль сопротивления цепи, которое называют индуктив­ным. Это сопротивление вместе с ULmопределяет силу тока: чем больше частота со и индуктивность L, тем меньше Im.

    При чисто индуктивном сопротивлении теплота в цепи не вы­деляется, так как R= 0. Роль индуктивности сводится к накопле­нию энергии магнитного поля и возвращению этой энергии обрат­но источнику тока. Таким образом, происходит периодическая перекачка энергии от источника в цепь и от цепи к источнику, в идеальном случае без потерь энергии.

    В цепи, в которой имеется только конденсатор с электроемко­стью С (рис. 14.6 а), омическое сопротивление всюду, кроме ем­кости, и индуктивность цепи равны нулю. Омическое сопротивле­ние Rконденсатора для постоянного тока бесконечно велико. На­пряжение на конденсаторе выражается зависимостью:

     


    Ток в цепи будет определяться скоростью изменения заряда на обкладках конденсатора. Используя соотношение для электроем­кости, найдем

    На основании (14.29) запишем

    г
    де

     


    — амплитуда тока. Как видно из (14.31) и (14.29), фаза тока (ωt+ π/2), а фаза напряжения — ωt. Следовательно, ток опережа­ет напряжение на π/2, что показано на векторной диаграмме (рис. 14.6, б).

    Сравнивая (14.32) с законом Ома, заметим, что выражение

    играет роль сопротивления цепи, которое называют емкостным. Оно определяет амплитуду тока: чем меньше емкость С и частота со, тем меньше Im. Для постоянного тока (ω = 0) емкость являет­ся бесконечно большим сопротивлением, и тока в такой цепи не будет. Заметим, что отсутствие конденсатора в цепях с резистором или индуктивностью формально означало не С = 0, т. е. С→о.

    Вцепи с конденсатором теплота не выделяется, так как омиче­ское сопротивление проводников равно нулю (нагревание ди­электрика в переменном электрическом поле здесь не учитывает­ся, оно будет рассмотрено позже). Роль емкости сводится к накоп­лению энергии электрического поля конденсатора и возвращению этой энергии обратно источнику тока. Происходит периодическая перекачка энергии от источника в цепь и от цепи к источнику, в идеальном случае без потерь энергии.

    Из формул (14.28) и (14.33) можно убедиться, что индуктивное и емкостное сопротивление в СИ измеряются в омах.

    § 14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений

    Представим цепь, в которой последовательно соединены резис­тор, катушка индуктивности и конденсатор (рис. 14.7, а). Напря­жение на зажимах а, bцепи, создаваемое внешним источником, выражается зависимостью (14.18). Как было показано в § 14.2, в общем случае сила тока в цепи и напряжение изменяются не в од­ной фазе, поэтому

    где φ — разность фаз напряжения и силы тока.

    С
    умма напряжений на отдельных участках равна внешнему напряжению:

     


     

     

     

    В
    соответствии с изложенным в § 14.2, напряжения UR, ULи Vr, можно записать так:

    (в фазе с током);



    (опережает силу тока по фазе на π/2);

     


    (отстает от силы тока по фазе на л/2).

    Подставив (14.36)—(14.38) в (14.35), после тригонометрических преобразований можно получить выражение для полного сопротив­ления цепи переменного тока и разности фаз φ. Однако более просто и наглядно удается это сделать с помощью векторных диаграмм.

    Н
    а рис. 14.7, б по оси токов направлен вектор амплитуды силы тока 1т. Так как по всей цепи амплитуда силы тока одинакова, то амплитуды напряжений на участках отложим относительно этого вектора: вектор URm— в одной фазе с силой тока; вектор ULm— с опережением силы тока по фазе на π/2, вектор UCm— с отставани­ем от силы тока по фазе на π/2. Суммируя три вектора, находим графически значения Umи φ. Используя теорему Пифагора, имеем

     

    П
    одставляя в (14.39) выражения этих амплитуд из (14.21), (14.27) и (14.32) и учитывая закон Ома, находим

    г
    де Zполное сопротивление цепи переменного тока, назы­ваемое импедансом. Из (14.40) получаем

    Омическое сопротивление Rцепи называют также активным, оно обусловливает выделение теплоты в цепи в соответствии с за­коном Джоуля—Ленца. Разность индуктивного и емкостного со­противлений (XL - Хс) называют реактивным сопротивлени­ем. Оно не вызывает нагревания элементов электрической цепи.

    Запишем закон Ома применительно к амплитудам напряже­ния и силы тока в цепи (рис. 14.7):

     


     

    Из рис. 14.8 выразим также и значение ф через известные ве­личины:

     


    Если индуктивное и емкостное сопротивления цепи при их по­следовательном соединении одинаковы (XL= Хс), то [см. (14.41)] Z= R, и из (14.43) имеем tg φ = 0 и φ = 0. Это означает, что сила тока и приложенное напряжение изменяются в одной фазе так, как будто в цепи имеется только омическое сопротивление; на­пряжения на индуктивности и емкости одинаковы по амплитуде, но противоположны по фазе.

    Этот случай вынужденных электрических колебаний называ­ют резонансом напряжения.

    Т
    ак как ULm= UCm, то Lωpe3 = 1/(Сωрез). Отсюда находим резо­нансную частоту:

    При этом условии полное сопротивление Zцепи имеет на­именьшее значение, равное R, а сила тока достигает наибольшего значения. Векторная диаграмма для резонанса напряжений в це­пи показана на рис. 14.8.

    Если > 1/(Сω), то tg φ > 0 и φ > 0, сила тока отстает по фазе от приложенного напряжения (см. рис. 14.7, б). При Lω < l/(Cω) имеем tg φ < 0 и φ < 0. Сила тока опережает по фазе напряжение. Векторная диаграмма для этого случая дана на рис. 14.9.

     


     

    § 14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии

    Ткани организма проводят не только постоянный (см. § 12.10), но и переменный ток. Опыт показывает, что в этом случае сила то­ка, проходящая через биологическую ткань, опережает по фазе приложенное напряжение. Следовательно (см. § 14.3), емкостное сопротивление тканей больше индуктивного. В таблице 24 в качестве примера приведены значения разности фаз тока и напря­жения для некоторых тканей (частота 1 кГц).

    Таблица 24

    Название ткани

    Фаз в градусах

    Кожа человека, лягушки

    -55

    Нерв лягушки

    -64

    Мышцы кролика

    -65

     

    Отсюда следует, что моделировать электрические свойства био­логических тканей можно, используя резисторы, которые облада­ют активным сопротивлением, и конденсаторы — носители емко­стного сопротивления. В качестве модели обычно используют эк­вивалентную электрическую схему тканей организма. Она представляет собой схему, состоящую из резисторов и конденса­торов, частотная зависимость (дисперсия) импеданса которой близка к частотной зависимости импеданса биологической ткани.

    На рис. 14.10 представлен график частотной зависимости им­педанса мышечной ткани. Ради компактности кривая построена в логарифмических координатах. Из гра­фика видны две особенности этой зави­симости: во-первых, плавное уменьше­ние импеданса с увеличением часто­ты (общий ход зависимости импеданса от частоты) и, во-вторых, наличие трех областей частот, в которых имеет место отклонение от общего хода зави­симости импеданса от частоты: Zмало изменяется. Они были названы, соот­ветственно, областями α-, (β- и γ-дис­персии импеданса.

    Установим, какая электрическая схема (модель) наиболее удачно отра­жает общий ход зависимости импе­данса ткани организма от частоты. В качестве вариантов рассмотрим схе­мы, представленные на рис. 14.11.

    Для схемы, изображенной на рис. 14.11, а, частотная зависимость импеданса может быть получена из (14.41) при L = 0:

    В соответствии с формулой (14.45) импеданс уменьшается с увеличением частоты, однако име-

    ется противоречие с опытом: при ω→∞ Z→∞. Последнее означа­ет бесконечно большое сопротивление при постоянном токе, что противоречит опыту (рис. 14.10).

    Схема, изображенная на рис. 14.11, б, соответствует общей тенденции экспериментальной кривой: при увеличении частоты уменьшается емкостное сопротивление и уменьшается импеданс. Однако при ω →∞,Хс →0 и Z→ 0, что не соответствует опыту.

    Наиболее удачна схема рис. 14.11, в, в ней отсутствуют проти­воречия с опытом, характерные для двух предыдущих схем. Имен­но такое сочетание резисторов и конденсатора может быть принято за эквивалентную электрическую схему тканей организма. Час­тотная зависимость импеданса эквивалентной электрической схе­мы соответствует общему ходу экспериментальной зависимости импеданса от частоты. Важно отметить, что при этом электроем­кость и, следовательно, диэлектрическая проницаемость оста­ются постоянными.

    Поясним причину возникновения областей α-, β- и γ-дисперсии импеданса. Ткань организма является структурой, обладающей свойствами проводника (электролита) и диэлектрика. Поляризация диэлектрика (§ 12.6) во внешнем электрическом поле происходит не мгновенно, а зависит от времени. Это означает зависимость от време­ни поляризованности диэлектрика е) при воздействии постоянного . электрического поля — напряженность электрического поля):

    Если электрическое поле изменяется по гармоническому зако­ну, то поляризованность будет также изменяться по гармоническому закону, а амплитуда поляризованности будет зависеть от частоты изменения поля с запаздыванием по фазе:

     

    И
    з (12.41) получим выражение для диэлектрической проница­емости:

     

    Из (14.48) следует, что условие (14.47) означает частотную зависимость диэлектрической проницаемости при воздействии переменным (гармоническим) электрическим полем: е = f(ω). Из­менение диэлектрической проницаемости с изменением часто­ты электрического поля означает изменение электроемкости и, как следствие, изменение импеданса.

    Запаздывание изменения поляризованности относительно из­менения напряженности электрического поля зависит от механиз­ма поляризации вещества. Самый быстрый механизм — электрон­ная поляризация (см. § 12.6), так как масса электронов достаточно мала. Это соответствует частотам (около 1015 Гц), которые сущест­венно превышают области α-, (β-, и γ-дисперсии.

    Ориентационная поляризация воды, молекулы которой имеют сравнительно малую массу, соответствует γ-дисперсии (частоты около 20 ГГц).

    Крупные полярные органические молекулы, например белки, имеют значительную массу и успевают реагировать на перемен­ное электрическое поле с частотой 1—10 МГц. Это соответствует β-дисперсии.

    При α-дисперсии происходит поляризация целых клеток в ре­зультате диффузии ионов, что занимает относительно большое время, и α-дисперсии соответствует область низких частот (0,1— 10 кГц). В этой области емкостное сопротивление мембран очень велико, поэтому преобладают токи, огибающие клетки и проте­кающие через окружающие клетки растворы электролитов.

    Итак, области α-, β- и γ-дисперсии импеданса объясняются тем, что с увеличением частоты переменного электрического поля в явлении поляризации участвуют разные структуры биологиче­ских тканей: при низких частотах на изменение поля реагируют все структуры (α-дисперсия), с увеличением частоты реагируют крупные молекулы-диполи органических соединений и молеку­лы воды (β-дисперсия), а при самых больших частотах реагируют только молекулы воды (γ-дисперсия). Во всех случаях имеет место электронная поляризация. С увеличением частоты электрического тока (электрического поля) все меньше структур будет реагиро­вать на изменение этого поля и меньше будет значение поляризованности Рет. Отсюда, согласно (14.48), с увеличением частоты будет уменьшаться диэлектрическая проницаемость е, а следова­тельно, и электроемкость С, а это, согласно (14.33), приведет к увеличению емкостного сопротивления Хси импеданса Z. Следо­вательно, на фоне общего хода зависимости Z= f(ω) (см. рис. 14.10) появляются области с меньшим убыванием Zпри возраста­нии частоты (области α-, (β- и γ-дисперсии).

    Частотная зависимость импеданса позволяет оценить жизнеспо­собность тканей организма, что важно знать для пересадки (транс­плантации) тканей и органов. Различие в частотных зависимостях импеданса получается и в случаях здоровой и больной ткани.

    Импеданс тканей и органов зависит также и от их физиологи­ческого состояния. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой де­ятельности.

    Диагностический метод, основанный на регистрации из­менения импеданса тканей в процессе сердечной деятельнос­ти, называют реографией (импеданс-плетизмография).

    С помощью этого метода получают реограммы головного мозга (реоэнцефалограмма), сердца (реокардиограмма), магистраль­ных сосудов, легких, печени и конечностей. Измерения обычно проводят на частоте 30 кГц.

    В заключение отметим, что знание пассивных электрических свойств биологических тканей важно при разработке теоретиче­ских основ методов электрографии органов и тканей, так как со­здаваемый токовыми диполями электрический ток проходит че­рез них. Кроме того, представления о дисперсии импеданса позво­ляют оценить механизм действия токов и полей, используемых в терапевтических целях.

    1   ...   19   20   21   22   23   24   25   26   ...   41


    написать администратору сайта