Главная страница
Навигация по странице:

  • § 14.6. Электромагнитные волны

  • § 14.7. Шкала электромагнитных волн . Классификация частотных интервалов, принятая в медицине

  • § 15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ

  • § 15.2. Воздействие переменными (импульсными) токами

  • Биофиз.РЕМИЗОВ. Механика. Акустика глава 4 Некоторые вопросы биомеханики


    Скачать 9.74 Mb.
    НазваниеМеханика. Акустика глава 4 Некоторые вопросы биомеханики
    АнкорБиофиз.РЕМИЗОВ.doc
    Дата08.12.2017
    Размер9.74 Mb.
    Формат файлаdoc
    Имя файлаБиофиз.РЕМИЗОВ.doc
    ТипДокументы
    #10792
    страница24 из 41
    1   ...   20   21   22   23   24   25   26   27   ...   41
    § 14.5. Электрический импульс и импульсный ток

    Электрическим импульсом назовем кратковременное из­менение электрического напряжения или силы тока.

    В технике импульсы подразделяются на две большие группы: видео- и радиоимпульсы.

    Видеоимпульсы — это такие электрические импульсы тока или напряжения, которые имеют постоянную составляющую, от­личную от нуля. Таким образом, видеоимпульс имеет преимуще­ственно одну полярность. По форме видеоимпульсы бывают (рис. 14.12): а) прямоугольные; б) пилообразные; в) трапециедальные; г) экспоненциальные; д) колоколообразные и др.

    Р
    адиоимпульсы
    — это модулированные электромагнитные колебания (рис. 14.13).

    В физиологии термином «электрический импульс», или «элек­трический сигнал», обозначают именно видеоимпульсы, поэтому рассмотрим параметры этих импульсов, оценивающие их форму, длительность и свойства отдельных участков.

    Характерными участками импульса (рис. 14.14) являются: 1 2 — фронт, 2—3 — вершина, 3—4 — срез (или задний фронт), 45 — хвост. Импульс, изображенный на этом рисунке, очень схема­тичен. У него четко определены моменты начала t1перехода от фронта к вершине t2и конца импульса t3. В реальном сигнале (им­пульсе) эти времена размыты (рис. 14.15), поэтому их эксперимен­тальное определение может внести существенную погрешность.

    Для уменьшения возможной погрешности условились выде­лять моменты времени, при которых напряжение (или сила то­ка) имеет значения 0,1 Umи 0,9 Um, где Um— амплитуда, т. е. наибольшее значение импульса (рис. 14.15). На этом же рисунке показаны: τф — длительность фронта; τср — длительность среза и τи — длительность

     

    н
    азывают крутизной фронта.

     


    Повторяющиеся импульсы назы­вают импульсным током. Он харак­теризуется периодом (периодом повторе­ния импульсов) Т — средним временем между началами соседних импульсов (рис. 14.16) и частотой (частотой повто­рения импульсов) f = 1/Т. Скважно­стью следования импульсов называет­ся отношение:

     


    Величина, обратная скважности, есть коэффициент заполнения:

     


    § 14.6. Электромагнитные волны

    Обобщая результаты опытов X. К. Эрстеда по воздействию электрического тока на магнитную стрелку, опытов Фарадея по электромагнитной индукции и других фактов, Максвелл создал в рамках классической физики теорию электромагнитного поля.

    В основе теории Максвелла лежат два положения: а) всякое пе­ременное электрическое поле порождает магнитное и б) всякое пе­ременное магнитное поле порождает электрическое (явление электромагнитной индукции).

    Взаимное образование электрических и магнитных полей при­водит к понятию электромагнитной волны — распространение единого электромагнитного поля в пространстве.

    Если распространение плоской механической волны описыва­лось одним уравнением (5.48), то распространение плоской элек­тромагнитной волны описывается двумя уравнениями — соответ­ственно для электрической и магнитной компонент единого элек­тромагнитного поля:

    здесь Е и В соответственно напряженность электрического поля и магнитная индукция, Ети Вт— их амплитудные значения.

    Векторы Е, В и v(скорость распространения волны) взаимно перпендикулярны (см. рис. 14.17).

    В теории Максвелла было получено выражение для скорости распространения электромагнитной волны

     

    уме, е и ц — соответственно диэлектри­ческая и магнитная проницаемости, б0 и ц0 — соответственно электрическая и магнитная постоянные.

    Таким образом, скорость распрост­ранения электромагнитных волн рав­на скорости света. Это послужило ос­нованием для создания Максвеллом электромагнитной теории света.

    Сопоставляя (14.52) и выражение для показателя преломления п = c/v, можно установить связь между п и диэлектрической и магнитной проницаемостями:

    Объемная плотность энергии электромагнитного поля склады­вается из объемных плотностей энергии

    электрического (12.46) и магнитного(13.8) полей:

     

     


     


     


     


    Плотность потока энергии волн (интенсивность волны) получим из общей формулы (5.54), подставляя в нее (14.58) и (14.52):

    И
    з (14.56) можно получить выражение, если подставить это выражение в (14.59), то получим:

     


    Как видно, интенсивность электромагнитной волны пропорци­ональна квадрату амплитуды напряженности электрического по­ля. Заметим, что аналогичная связь между интенсивностью и амплитудой существует и для механических волн [см. (5.56)].

    § 14.7. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине

    Из теории Максвелла вытекает, что различные электромагнит­ные волны, в том числе и световые, имеют общую природу. В связи с этим целесообразно представить всевозможные электромагнитные волны (электромагнитное излучение) на единой шкале (рис. 14.18).

    В
    ся шкала условно подразделена на шесть диапазонов: радиовол­ны (длинные, средние и короткие), инфракрасные, видимые, ульт­рафиолетовые, рентгеновские волны и гамма-излучение. Эта классификация определяется либо механизмом образования волн, их частотой, либо возможностью их зрительного восприятия человеком.

    Радиоволны обусловлены переменными токами в проводниках и электронными потоками (макроизлучатели). Инфракрасное, ви­димое и ультрафиолетовое излучения исходят из атомов, молекул и быстрых заряженных частиц (микроизлучатели). Рентгенов­ское излучение возникает при внутриатомных процессах, γ-излучение имеет ядерное происхождение.

    Некоторые диапазоны перекрываются, так как волны одной и той же длины могут образоваться в разных процессах. Так, наибо­лее коротковолновое ультрафиолетовое излучение перекрывается длинноволновым рентгеновским.

    В этом отношении очень характерна пограничная область инф­ракрасных волн и радиоволн. До 1922 г. между этими диапазона­ми был пробел. Наиболее коротковолновое излучение этого неза­полненного промежутка имело молекулярное (атомное) проис­хождение (излучение нагретого тела), а наиболее длинноволновое излучалось макроскопическими вибраторами Герца. Российским физиком А. А. Глаголевой-Аркадьевой было предложено пропус­кать искру через смесь большого числа мелких металлических опилок в масле. При этом можно было получать различные элек­тромагнитные волны с длиной волны 82 мкм и более. Таким образом, диапазоны инфракрасных и радиоволн были сомкнуты.

    Сейчас никого не удивляет, что даже миллиметровые волны могут генерироваться не только радиотехническими средствами, но и молекулярными переходами. Появился раздел — радио­спектроскопия, который изучает поглощение и излучение радио­волн различными веществами.

    В медицине принято следующее условное разделение электро­магнитных колебаний на частотные диапазоны (табл. 25).

    Таблица 25

    Низкие (НЧ)

    до 20 Гц

    Звуковые (34)

    20 Гц — 20 кГц

    Ультразвуковые или надтональные (УЗЧ)

    20 кГц — 200 кГц

    Высокие (ВЧ)

    200 кГц — 30 МГц

    Ультравысокие (УВЧ)

    30 МГц — 300 МГц

    Сверхвысокие (СВЧ)

    300 МГц — 300 ГГц

    Крайневысокие (КВЧ)

    свыше 300 ГГц

     

    Часто физиотерапевтическую электронную аппаратуру низкой и звуковой частот называют низкочастотной. Электронную ап­паратуру всех других частот называют обобщающим понятием высокочастотная.

    ГАЛАВА15 Физические процессы в тканях при воздействии током и электромагнитными полями

     

    Все вещества состоят из молекул, каждая из них является сис­темой зарядов. Поэтому состояние тел существенно зависит от протекающих через них токов и от воздействующего элек­тромагнитного поля. Электрические свойства биологических тел более сложны, чем свойства неживых объектов, ибо ор­ганизм - это еще и совокупность ионов с переменной кон­центрацией в пространстве. Первичный механизм воздейст­вия токов и электромагнитных полей на организм — физиче­ский, он и рассматривается в главе применительно к медицинским лечебным методам.

    § 15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ

    Человеческий организм в значительной степени состоит из био­логических жидкостей, содержащих большое количество ионов, которые участвуют в различных обменных процессах.

    Под влиянием электрического поля ионы движутся с разной скоростью и скапливаются около клеточных мембран, образуя встречное электрическое поле, называемое поляризационным. Та­ким образом, первичное действие постоянного тока связано с дви­жением ионов, их разделением и изменением их концентрации в разных элементах тканей.

    Воздействие постоянного тока на организм зависит от силы то­ка, поэтому весьма существенно электрическое сопротивление тканей и прежде всего кожи. Влага, пот значительно уменьшают сопротивление, что даже при небольшом напряжении может выз­вать значительный ток через организм.

    Непрерывный постоянный ток напряжением 60—80 В исполь­зуют как лечебный метод физиотерапии (гальванизация).

    Источником тока обычно служит двухполупериодный выпрями­тель — аппарат для гальванизации. Применяют для этого электро­ды из листового свинца или станиоля толщиной 0,3—0,5 мм. Так как продукты электролиза раствора поваренной соли, содержаще­гося в тканях, вызывают прижигание, то между электродами и ко­жей помещают гидрофильные прокладки, смоченные, например, теплой водой.

    Дозируют силу постоянного тока по показаниям миллиампер­метра, при этом обязательно учитывают предельно допустимую плотность тока — 0,1 мА/см2.

    Постоянный ток используют в лечебной практике также и для введения лекарственных веществ через кожу или слизистые обо­лочки. Этот метод получил название электрофореза лекарст­венных веществ.

    Для этой цели поступают так же, как и при гальванизации, но прокладку активного электрода смачивают раствором соответст­вующего лекарственного вещества. Лекарство вводят с того полю­са, зарядом которого оно обладает: анионы вводят с катода, кати­оны — с анода.Введение лекарственных веществ с помощью постоянного то­ка хорошо иллюстрирует следующий опыт. Двум кроликам вы­бривают участки кожи на обоих боках и к выбритым местам прикрепляют фланелевые прослойки; одни из них смочены раствором азотнокислого стрихнина, дру­гие — раствором

    поваренной соли (рис. 15.1). На фланель накладывают электроды и пропускают по цепи ток силой 50 мА. Спустя некоторое вре­мя кролик, у которого стрихнин на аноде, погибает при типичных явле­ниях отравления этим веществом. Другой же кролик, у которого стрих­нин на катоде, не погибает, но если изменить направление тока, то и он погибнет.

    Гальванизацию и электрофорез лекарственных веществ можно осуществлять с помощью жидкостных электродов в виде ванн, в которые погружаются конечности пациента.

    § 15.2. Воздействие переменными (импульсными) токами

    Действие переменного тока на организм существенно зависит от его частоты. При низких, звуковых и ультразвуковых частотах (см. § 14.7) переменный ток, как и постоянный, вызывает раздра­жающее действие на биологические ткани. Это обусловлено сме­щением ионов растворов электролитов, их разделением, измене­нием их концентрации в разных частях клетки и межклеточного пространства.

    Раздражение тканей зависит также и от формы импульсного тока, длительности импульса и его амплитуды. Так, например, увеличение крутизны фронта импульса уменьшает пороговую си­лу тока, который вызывает сокращение мышц. Это свидетельст­вует о том, что мышцы приспосабливаются к изменению силы то­ка, наступают ионные компенсационные процессы. Крутизна прямоугольного импульса очень велика (теоретически — беско­нечна), поэтому для таких импульсов пороговая сила тока мень­ше, чем для других. Существует определенная связь между поро­говой Iтахамплитудой и длительностью прямоугольного импуль­са, который вызывает раздражение (рис. 15.2). Каждой точке кривой и точкам, лежащим выше кривой, соответствуют импуль­сы, которые вызывают сокращение мышц. Точки, расположен­ные ниже кривой, отображают импульсы, не вызывающие раз­дражения. Кривая на рисунке называется характеристикой воз­буждения. Она специфична для разных мышц.

    Так как специфическое физиологическое действие электрическо­го тока зависит от формы импульсов, то в медицине для стимуляциицентральной нервной системы (электросон, электронаркоз), нервно-мышечной систе­мы, сердечно-сосудистой системы (кардио­стимуляторы, дефибрилляторы) и т. д. ис­пользуют токи с различной временной зависимостью.

    Ток с импульсами прямоугольной фор­мы с длительностью импульсов τи = 0,1 — 1 мс и диапазоном частот 5—150 Гц ис­пользуют для лечения электросном, токи

     

     

    с τи = 0,8—3 мс и диапазоном частот 1—1,2 Гц применяют во вживляе­мых (имплантируемых) кардиости­муляторах. Ток с импульсами тре­угольной формы (рис. 15.3, а; с τи = = 1—1,5 мс, частота 100 Гц), а так­же с импульсами экспоненциальной формы (рис. 15.3, б; τи = 3—60 мс, частоты 8—80 Гц) применяют для возбуждения мышц, в частности при электрогимнастике. Для разных ви­дов электролечения используют диа-динамические токи, предложенные Бернаром. На рис. 15.3, в показана форма одного из видов такого им­пульсного тока, частота следования импульсов около 100 Гц.

    Действие переменного (гармонического) тока на организм при низких, звуковых и ультразвуковых частотах оценивается сле­дующими пороговыми значениями: порогом ощутимого тока и порогом неотпускающего тока.

    Порогом ощутимого тока называют наименьшую силу тока, раздражающее действие которого ощущает человек. Эта величина зависит от места и площади контакта тела с подведенным нап­ряжением, частоты тока, индивидуальных особенностей челове­ка (пол, возраст, специфика организма). Для однородных групп испытуемых порог ощутимого тока подчиняется закону нормаль­ного распределения со средним значением около 1 мА на частоте 50 Гц у мужчин для участка предплечье — кисть, на рис. 15.4 (кривая 1) показана зависимость среднего значения порога ощу­тимого тока для этой группы испытуемых от частоты тока.

    Если увеличивать силу тока от порога ощутимого его значения, то можно вызвать такое сгибание сустава, при котором человек не смо­жет самостоятельно разжать руку и ос­вободиться от проводника — источни­ка напряжения. Минимальную силу этого тока называют порогом неот­пускающего тока. Токи меньшей си­лы являются отпускающими. Порог неотпускающего тока — важный пара­метр, его превышение может быть гу­бительным для человека. Значения порога неотпускающего тока также подчиняются закону нор­мального распределения. На рис. 15.4 (кривая 2) графически представлена зависимость среднего по группе испытуемых муж­чин значения порога неотпускающего тока от частоты.

    Воздействуя на сердце, ток может вызвать фибрилляцию желу­дочков, которая приводит к гибели человека. Пороговая сила тока, вызывающего фибрилляцию, зависит от плотности тока, проте­кающего через сердце, частоты и длительности его действия.

    При частотах приблизительно более 500 кГц смещение ионов становится соизмеримым с их смещением в результате молекулярно-теплового движения, поэтому ток или электромагнитная волна не будет вызывать раздражающего действия. Основным первичным эффектом в этом случае является тепловое воздейст­вие. Лечебное прогревание высокочастотными электромагнитны­ми колебаниями обладает рядом преимуществ перед таким тради­ционным и простым способом, который реализуется грелкой.

    Прогревание грелкой внутренних органов осуществляется за счет теплопроводности наружных тканей — кожи и подкожножировой клетчатки. Высокочастотное прогревание происходит за счет образования теплоты во внутренних частях организма, т. е. его можно создать там, где оно нужно. Выделяемая теплота зави­сит от диэлектрической проницаемости тканей, их удельного со­противления и частоты электромагнитных колебаний. Подбирая соответствующую частоту, можно осуществлять «термоселектив­ное» воздействие, т. е. преимущественное образование теплоты в нужных тканях и органах.

    Прогревание высокочастотными колебаниями удобно и тем, что, регулируя мощность генератора, можно управлять мощно­стью тепловыделения во внутренних органах, а при некоторых процедурах возможно и дозирование нагрева. Кроме теплового эффекта электромагнитные колебания и волны при большой час­тоте вызывают и внутримолекулярные процессы, которые приво­дят к некоторым специфическим воздействиям.

    Чтобы нагреть ткани, необходимо пропускать большой ток. Как уже было отмечено, в этих случаях постоянный ток или ток низкой, звуковой и даже ультразвуковой частот может привести к электролизу и разрушению ткани. Поэтому для нагревания то­ками используются токи высокой частоты (см. § 14.7).

    Мощность тока, расходуемую на нагревание тканей, вычислим по формуле Р = I2R. Преобразуем ее, считая, что биологическая ткань расположена между двумя плоскими электродами с пло­щадью S, находящимися на расстоянии I, вплотную к ним (анало­гично тому, что изображено на рис. 12.28).Пусть плотность тока у одинакова во всех точках ткани и равна плотности тока на электродах. Учитывая, что R= pl/S, получаем

     


    где V = SI— объем ткани, ρ — ее удельное сопротивление. Разде­лив (15.1) на этот объем, получим количество теплоты q, выделяющееся за 1 с в 1 м3:

     


    Как и следовало ожидать, qзависит от плотности тока и удельного сопротивления ткани.

    Пропускание тока высокой частоты через ткань использу-1ют в физиотерапевтических процедурах, называемых диатер­мией и местной дарсонвализацией.

    При диатермии применяют ток частотой около 1 МГц со слабо­затухающими колебаниями, напряжение 100—150 В; сила тока несколько ампер. Так как наибольшим удельным сопротивлени­ем обладают кожа, жир, кости, мышцы, то они и нагреваются сильнее. Наименьшее нагревание у органов, богатых кровью или лимфой, — легкие, печень, лимфатические узлы. Недостаток ди­атермии — большое количество теплоты непродуктивно выделя­ется в слое кожи и подкожной клетчатке.

    В последнее время диатермия уходит из терапевтической прак­тики и заменяется другими методами высокочастотного воздейст­вия. Это обусловлено повышенной опасностью диатермии: неисп­равность аппарата, случайное искрение в месте наложения элект­родов при прямом двухполюсном касании биологического объекта и значительном токе могут привести к трагическим последствиям. Для местной дарсонвализации применяют ток частотой 100— 400 кГц, напряжение его — десятки киловольт, а сила тока небольшая — 10—15 мА.

    Ток к пациенту П (рис. 15.5) по­ступает от источника высокочастот­ных колебаний И через вакуумный гили заполненный графитом стеклянный электрод Э. Второго электрода нет, так как участок между точкой А 'Цепи и пациентом обладает электро­емкостью (на рисунке на этом участке условно изображен конденсатор), что Означает [см. (14.33)] электропровод­ность среды для переменного тока. Действующим фактором является не только импульсный ток высокой час

    тоты, но и электрический разряд, возникающий между кожей пациента и электродом.

    Токи высокой частоты используются также и для хирургиче­ских целей (электрохирургия). Они позволяют прижигать, «сва­ривать» ткани (диатермокоагуляция) или рассекать их (диатер-мотомия).

    При диатермокоагуляции применяют ток плотностью 6— 10 мА/мм2, в результате чего температура ткани повышается и ткань коагулирует. При диатермотомии плотность тока доводят до 40 мА/мм2, в результате чего острым электродом (электроно­жом) удается рассечь ткань. Электрохирургическое воздействие имеет определенные преимущества перед обычным хирургиче­ским вмешательством.

    1   ...   20   21   22   23   24   25   26   27   ...   41


    написать администратору сайта