Главная страница
Навигация по странице:

  • 2.3. Освоение обучающимися учебного предмета « Математика» в

  • Базовый уровень Углубленный уровень

  • Методика преподавание математики ФГОС ООО 3. MR_matematika = ссылки на ресурсы. Методические рекомендации для учителей математики по совершенствованию организации и методики преподавания учебных предметов Математика


    Скачать 1.35 Mb.
    НазваниеМетодические рекомендации для учителей математики по совершенствованию организации и методики преподавания учебных предметов Математика
    АнкорМетодика преподавание математики ФГОС ООО 3
    Дата31.03.2023
    Размер1.35 Mb.
    Формат файлаpdf
    Имя файлаMR_matematika = ссылки на ресурсы.pdf
    ТипМетодические рекомендации
    #1028111
    страница2 из 7
    1   2   3   4   5   6   7
    2.2. Освоение обучающимися учебного предмета «Математика »
    в соответствии с обновленными ФГОС НОО/ФГОС ООО
    В соответствии с Приказом Минпросвещения России от 31.05.2021 № 287
    «Об утверждении федерального государственного образовательного стандарта основного общего образования» (зарегистрирован в Минюсте России
    05.07.2021 № 64101), основными задачами обновленных ФГОС являются создание единого образовательного пространства по всей Российской
    Федерации и обеспечение преемственности образовательных программ начального общего, основного общего и среднего общего образования.
    В обновленных ФГОС сформулированы максимально четкие требования к предметным результатам по каждой учебной дисциплине соответствующего уровня, позволяющие ответить на вопросы: что конкретно школьник будет знать, чем овладеет и что освоит в каждом классе. Также обновленные ФГОС призваны обеспечить личностное развитие учащихся, включая гражданское, патриотическое, духовно-нравственное, эстетическое, физическое, трудовое, экологическое воспитание. Во ФГОС, планово вводимых в 2022 году, уделено внимание финансовой грамотности учеников, совершенствованию обучения на фоне развития информационных технологий. ФГОС описывают систему требований к условиям реализации общеобразовательных программ, соблюдение которых обеспечивает равенство возможностей получения качественного образования для всех детей независимо от их места жительства.
    В 2022 году на обучение по обновленным ФГОС переходят первые и пятые классы.
    Учебный план на изучение математики в 5 классе отводит не менее 5 учебных часов в неделю, всего не менее 170 учебных часов. Приоритетными целями обучения математике в 5 классе являются:
    — продолжение формирования основных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования обучающихся;
    — развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, интереса к изучению математики;
    — подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира;
    — формирование функциональной математической грамотности: умения распознавать математические объекты в реальных жизненных ситуациях, применять освоенные умения для решения практико-ориентированных задач, интерпретировать полученные результаты и оценивать их на соответствие практической ситуации.
    Основные линии содержания курса математики в 5 классе — арифметическая и геометрическая, которые развиваются параллельно, каждая в соответствии с собственной логикой, однако, не независимо одна от другой, а в

    11 тесном контакте и взаимодействии. Также в курсе происходит знакомство с элементами алгебры и описательной статистики.
    Изучение арифметического материала начинается со систематизации и развития знаний о натуральных числах, полученных в начальной школе. При этом совершенствование вычислительной техники и формирование новых теоретических знаний сочетается с развитием вычислительной культуры, в частности с обучением простейшим приёмам прикидки и оценки результатов вычислений. Другой крупный блок в содержании арифметической линии — это дроби. Начало изучения обыкновенных и десятичных дробей отнесено к 5 классу. Это первый этап в освоении дробей, когда происходит знакомство с основными идеями, понятиями темы. При этом рассмотрение обыкновенных дробей в полном объёме предшествует изучению десятичных дробей, что целесообразно с точки зрения логики изложения числовой линии, когда правила действий с десятичными дробями можно обосновать уже известными алгоритмами выполнения действий с обыкновенными дробями. Знакомство с десятичными дробями расширит возможности для понимания обучающимися прикладного применения новой записи при изучении других предметов и при практическом использовании.
    При обучении решению текстовых задач в 5 классе используются арифметические приёмы решения. Рассматриваются текстовые задачи следующих видов: задачи на движение, на части, на покупки, на работу и производительность, на проценты, на отношения и пропорции. Кроме того, обучающиеся знакомятся с приёмами решения задач перебором возможных вариантов, учатся работать с информацией, представленной в форме таблиц или диаграмм.
    В
    Примерной рабочей программе предусмотрено формирование пропедевтических алгебраических представлений. Буква как символ некоторого числа в зависимости от математического контекста вводится постепенно. Буквенная символика широко используется прежде всего для записи общих утверждений и предложений, формул, в частности для вычисления геометрических величин, в качестве «заместителя» числа.
    В курсе «Математика» 5 класса представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений. Это важный этап в изучении геометрии, который осуществляется на наглядно-практическом уровне, опирается на наглядно-образное мышление обучающихся. Большая роль отводится практической деятельности, опыту, эксперименту, моделированию.
    Обучающиеся знакомятся с геометрическими фигурами на плоскости и в пространстве, с их простейшими конфигурациями, учатся изображать их на нелинованной и клетчатой бумаге, рассматривают их простейшие свойства. В процессе изучения наглядной геометрии знания, полученные обучающимися в начальной школе, систематизируются и расширяются.
    В целях методического обеспечения реализации обновленных
    Федеральных государственных образовательных стандартов разработаны примерные рабочие программы по предметам учебных планов основного

    12 общего образования. Программы прошли экспертизу ведущих научных и образовательных организаций. Примерные рабочие программы одобрены решением федерального учебно-методического объединения по общему образованию
    , протокол 3/21 от 27.09.2021 г.
    Примерные рабочие программы соответствуют требованиям федеральных государственных образовательных стандартов общего образования и обеспечивают:

    равный доступ к качественному образованию;

    единые требования к условиям организации образовательного процесса;

    единые подходы к оценке образовательных результатов.
    Примерные рабочие программы по математике по обновленным федеральным государственным образовательным стандартам затрагивают содержание преподаваемой дисциплины и организационный аспект, а именно:
    • содержание образования, соответствующее предметным результатам освоения Примерной рабочей программы, распределено по годам обучения;
    • автор рабочей программы (учитель или группа учителей, разрабатывая адаптированную рабочую программу) вправе увеличить или уменьшить предложенное число учебных часов на тему, чтобы углубиться в тематику, более заинтересовавшую учеников, или направить усилия на преодоление затруднений;
    • допустимо локальное перераспределение и перестановка элементов содержания внутри данного класса. Нельзя переносить темы из класса в класс, но можно этот перенос осуществлять внутри года обучения;
    • количество проверочных работ (тематический и итоговый контроль качества усвоения учебного материала) и их тип (самостоятельные и контрольные работы, тесты и др.) остаются на усмотрение учителя;
    • в тематическое планирование, в конце года, включены итоговое обобщение и систематизация знаний. Учитель вправе увеличить или уменьшить число учебных часов, отведённых на обобщение, повторение, систематизацию знаний обучающихся;
    • одной из приоритетных целей обучения математике является формирование математической грамотности: решать задачи из реальной жизни, применять математические знания для решения задач из других предметов.
    Помимо примерных рабочих программ могут использоваться рабочие программы, разработанные в образовательной организации при полном учете
    требований ФГОС к результатам освоения основных образовательных
    программ.
    Содержание определенной части учебников, включенных в Федеральный перечень, не соответствует примерным рабочим программам, в связи с чем: в настоящее время в издательствах завершается доработка содержания действующих и подготовка новых учебников.

    13
    Содержание рабочих программ под имеющиеся учебники корректировать не требуется, поскольку будут изданы новые учебники, соответствующие примерным рабочим программам.
    Так как обновленные ФГОС предусматривают возможность менять последовательность тем и перераспределять часы по усмотрению учителя, то в этой части видоизменения рабочей программы допускаются.
    Учитель, пока нет новых учебников, должен использовать при подготовке уроков ЭОР и ЦОР, учитывая требования ФГОС к результатам освоения основных образовательных программ.
    При составлении рабочей программы по математике для 5 класса на 2022-
    2023 учебный год необходимо руководствоваться сравнительным анализом
    Примерной рабочей программы основного общего образования «Математика» и программы «Математика» по действующим стандартам.
    5 класс
    В тематическом планировании новой редакции Программы 5 класса появились темы, которые в предыдущих примерных рабочих Программах изучались в 6 классе. Например: делители и кратные, разложение числа на множители, признаки делимости на 2, 5, 10, 3, 9. А также согласно новой примерной Программе, на год раньше предлагается изучать умножение и деление дробей и сопутствующие этому темы (основное свойство дроби, приведение дробей к новому знаменателю).
    В отличие от предыдущей Программы, в обновленной Программе геометрическая линия усилена включением практических работ как с плоскими объектами, так и с объемными телами. Предусмотрены такие виды деятельности как исследование свойств геометрических тел путем наблюдения, эксперимента, моделирования, измерения.
    В обновленных ФГОС более детально раскрыты планируемые результаты освоения математики. Например, личностные результаты характеризуются патриотическим, трудовым, эстетическим, гражданским и духовно - нравственным, физическим, экологическим воспитанием, ценностью научного познания и результатами адаптации к условиям изменяющейся социальной и природной среды.
    По сравнению с требованиями к предметным результатам в предыдущей
    Программе, в новой Программе - в разделе «Планируемые предметные результаты освоения Примерной рабочей программы» более конкретно представлены результаты освоения учебного курса 5 класса, т. к. планируемые результаты классифицированы по темам: числа и вычисления, решение текстовых задач, наглядная геометрия. Т. е. в обновленных ФГОС наряду с развитием УУД (которые предполагались в ФГОС второго поколения), прописаны более четкие требования к предмету.
    Соответствие содержания учебников из Федерального перечня разделам примерной рабочей программы и рекомендации по работе представлены на официальном сайте отделения учителей математики регионального УМО в системе общего образования Курской области (
    https://www.umomatem.ru/
    )

    14
    2.3. Освоение обучающимися учебного предмета « Математика» в
    соответствии с ФГОС СОО (базовый, углублённый уровни)
    В 2022/2023 учебном году преподавание математики ведется в соответствии с федеральным государственным образовательным стандартом среднего общего образования (далее – ФГОС СОО) в 10-11 классах во всех общеобразовательных организациях Курской области.
    Согласно всем вариантам примерного учебного плана среднего общего образования, учебный предмет «Математика» является частью предметной области «Математика и информатика» и его изучение является обязательным на базовом или углубленном уровне.
    Математика на базовом уровне изучается в объеме 280 часов (2 года по 4 часа в неделю), на углубленном уровне - в объеме 420 часов (2 года по 6 часов в неделю). Это минимальное количество часов, которое может быть увеличено за счет часов школьного компонента. Оптимальное сочетание, с учётом традиций российской школы, – 8 часов на учебный предмет и 3 часа на элективные курсы при изучении предмета на углубленном уровне. Уровень изучения математики определяется профилем класса, а также запросами и предпочтениями обучающихся. При формировании учебного плана необходимо учесть профессиональные интересы обучающихся и предварительный выбор предметов, которые они будут сдавать на ЕГЭ. При этом следует обратить внимание на тот факт, что в методических рекомендациях ФИПИ на основе анализа результатов ГИА указывается, что учащиеся сдающие математику на профильном уровне должны изучать ее в объеме не менее 6 часов в неделю.
    Учебный предмет «Математика» на углублённом уровне рекомендуется изучать в классах технологического, социально-экономического и естественнонаучного профилей, ориентированных на профессии, связанные с финансами и экономикой, на производственную, инженерную и информационную сферы деятельности.
    Универсальный профиль ориентирован, в первую очередь, на обучающихся, чей выбор не соответствует заданным выше профилям или они не определились с выбором профессии. Он позволяет ограничиться базовым уровнем изучения учебных предметов, однако ученик также может выбрать учебные предметы на углубленном уровне, в том числе и математику.
    При изучении математики большое внимание уделяется развитию коммуникативных умений (формулировать, аргументировать, оценивать и т.д.), формированию основ логического мышления в части проверки истинности и ложности утверждений, построения примеров и контрпримеров, цепочек утверждений, формулировки отрицаний, а также необходимых и достаточных условий. В зависимости от уровня программы больше или меньше внимания уделяется умению работать по алгоритму, методам поиска алгоритма и определению границ применимости алгоритмов.
    Требования, сформулированные в разделе «Геометрия», в большей степени относятся к развитию пространственных представлений и графических методов, чем к формальному описанию стереометрических фактов.

    15
    Так как учебный предмет «Математика» является интеграцией двух важнейших содержательных разделов: алгебры и начал математического анализа и геометрии, образовательная организация самостоятельно, в рамках количества часов, отведенного учебным планом, осуществляет распределение часов между этими разделами. Но при распределении часов необходимо учитывать, что изучение учебного предмета по модели 1 час в неделю часто приводит к сложности достижения планируемых результатов и снижению мотивации учения, поэтому рекомендуется организовать изучение геометрии на базовом уровне таким образом, чтобы количество часов в неделю было более 1.
    При этом можно выбрать любую модель изучения, как последовательную
    (блочную), так и параллельную. В зависимости от выбранной модели составляется рабочая программа по предмету. При разработке рабочей программы по предмету «Математика» ориентирами являются Примерная основная образовательная программа среднего общего образования, размещенная в федеральном реестре общеобразовательных программ (далее
    ПООП СОО) (http:fgosreestr.ru) а также образовательная программа организации для ступени СОО.
    Планируемые результаты освоения основной образовательной программы.
    Планируемые результаты освоения ООП СОО согласуются с Концепцией развития математического образования в РФ. К ключевым задачам, решаемым математическим образованием на ступени среднего общего образования относятся:

    предоставление каждому обучающемуся возможности достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе;

    обеспечение необходимого стране числа выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики, математические исследования, работу в сфере информационных технологий и др.;

    подготовка обучающихся на ступенях основного общего и среднего общего образовании в соответствии с их запросами к уровню подготовки в сфере математического образования.
    При этом выделяются три направления требований к результатам математического образования:
    1. практико-ориентированное (математика для жизни);
    2. математика для использования в профессии;
    3. математика для творческого использования в профессии.
    Результаты освоения учебного предмета «Математика»
    Таблица 1.
    Базовый уровень
    Углубленный уровень

    16 1) сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;
    2) сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
    3) владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
    4) владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;
    5) сформированность представлений об основных понятиях, идеях и методах математического анализа;
    6) владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;
    7) сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях
    1) сформированность представлений о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений;
    2) сформированность понятийного аппарата по основным разделам курса математики; знаний основных теорем, формул и умения их применять; умения доказывать теоремы и находить нестандартные способы решения задач;
    3) сформированность умений моделировать реальные ситуации, исследовать построенные модели, интерпретировать полученный результат;
    4) сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;
    5) владение умениями составления вероятностных моделей по условию задачи и вычисления вероятности наступления событий, в том числе с применением формул комбинаторики и основных теорем теории вероятностей; исследования случайных величин по их распределению.

    17 элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
    8) владение навыками использования готовых компьютерных программ при решении задач
    В т.ч. для учащихся с ОВЗ
    9) для слепых и слабовидящих обучающихся: овладение правилами записи математических формул и специальных знаков рельефно-точечной системы обозначений Л. Брайля; овладение тактильно-осязательным способом обследования и восприятия рельефных изображений предметов, контурных изображений геометрических фигур и другое; наличие умения выполнять геометрические построения с помощью циркуля и линейки, читать рельефные графики элементарных функций на координатной плоскости, применять специальные приспособления для рельефного черчения («Драфтсмен»,
    «Школьник»); овладение основным функционалом программы невизуального доступа к информации на экране персонального компьютера, умение использовать персональные тифлотехнические средства информационно- коммуникационного доступа слепыми обучающимися;
    10) для обучающихся с нарушениями опорно-двигательного аппарата: овладение специальными компьютерными средствами представления и анализа данных и умение использовать персональные

    18 средства доступа с учетом двигательных, речедвигательных и сенсорных нарушений; наличие умения использовать персональные средства доступа
    Предметные результаты освоения учебного предмета «Математика»
    На уровне среднего общего образования в ПООП представлены четыре группы предметных результатов: «Выпускник научится – базовый уровень»,
    «Выпускник получит возможность научиться – базовый уровень», «Выпускник научится – углубленный уровень», «Выпускник получит возможность научиться – углубленный уровень». Принципиальным отличием результатов базового уровня от результатов углубленного уровня является их целевая направленность. Результаты базового уровня ориентированы на общую функциональную грамотность, получение компетентностей для повседневной жизни и общего развития. Результаты углубленного уровня ориентированы на получение компетентностей для последующей профессиональной деятельности как в рамках данной предметной области, так и в смежных с ней областях.
    Предметные результаты базового уровня, относящиеся к разделу «Выпускник получит возможность научиться», соответствуют предметным результатам раздела «Выпускник научится» на углубленном уровне. Предметные результаты раздела «Выпускник получит возможность научиться» не выносятся на итоговую аттестацию, но при этом возможность их достижения должна быть предоставлена каждому обучающемуся.
    В зависимости от требований к предметным результатам математического образования и в соответствии с
    ПООП в общеобразовательных организациях могут реализовываться следующие рабочие программы по предмету: программа изучения математики на базовом уровне (компенсирующая базовая), либо программа изучения математики на базовом уровне (основная базовая), либо программа изучения математики на углубленном уровне.
    Требования к предметным результатам освоения курса математики конкретизированы в ПООП СОО, где представлены конкретные умения, которые необходимо сформировать у учащихся на предметном материале математики.
    1   2   3   4   5   6   7


    написать администратору сайта